PHYS 724 - Homework #24

1. Diagonalize the Hamiltonian (in the B^0 and \overline{B}^0 basis)

$$H = \mathcal{M} - \frac{i}{2} \Gamma$$

$$= \left(\begin{array}{cc} M & M_{12}^* \\ M_{12} & M \end{array} \right) - \frac{i}{2} \left(\begin{array}{cc} \Gamma & \Gamma_{12}^* \\ \Gamma_{12} & \Gamma \end{array} \right)$$

and obtain the mass eigenstates ($|B_1\rangle$ and $|B_2\rangle$) and eigenvalues μ_1 and μ_2. Show that a state prepared at time $t = 0$ as a B^0 (or as a \overline{B}^0) will evolve with time as follows:

$$|B^0(t)\rangle = g_+(t)|B^0\rangle - \frac{q}{p} g_-(t)|\overline{B}^0\rangle,$$

$$|\overline{B}^0(t)\rangle = g_+(t)|\overline{B}^0\rangle - \frac{p}{q} g_-(t)|B^0\rangle,$$

where

$$g_\pm(t) = \frac{1}{2}[e^{-i\mu_1 t} \pm e^{-i\mu_2 t}]$$

and where

$$\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2} \Gamma_{12}^*}{M_{12} - \frac{i}{2} \Gamma_{12}}}$$

and

$$|p|^2 + |q|^2 = 1$$