

Large Hadron Collider (LHC)

Dr. Venkat Kaushik 2016-01-15

Today's Topic

- 1. Introduction to Large Hadron Collider (LHC)
 - How do justify the need for LHC?
 - Why hadron? Why large ?
 - Layout
- 2. Design of LHC
 - Important parameters of LHC
- 3. Key Ideas of Colliding Particles
 - Event Rate
 - ➤ Center-of-mass energy (√s)
- 4. Synchrotrons and Beams
 - Cyclotron Frequency
 - > Betatron function $\beta(s)$
 - > Emittance (ε)
 - Luminosity

Why Need An LHC?

- Probing smaller and smaller Scale
 - Is necessary to understand the structure of matter and what they are made of (constituents)

 $\lambda = \frac{h}{p} \approx \frac{1.2 \, [fm]}{p \, [GeV/c]} \qquad \mbox{De-Broglie wavelength of a proton is < 1.2 fm} \\ \mbox{For } \lambda < 10^{-3} \times 1.2 \, fm \ p > 1 \ {\rm TeV/c} \end{cases}$

- To probe a distance 1000 times smaller than a proton
- Search for new types of matter (or new particles)
 - Higher energies are needed to discover new particles
 - Many theories predict particles with masses > 1 TeV
 - Many of these processes are rare
 - their rate of production (cross section) is small
 - Surprising new results could be lurking. Need a probe like LHC

What's Large About LHC ?

Lake Geneva

 27 km circumference
Highest energy collider ever built
Superconducting, super cooled magnets

ATLAS

Our home (2008 – 2010)

High Energy Colliders

Accelerator	Particle Type, Laboratory	Energy √s GeV	Years of operation
LEP-I	e⁺e⁻ collider, CERN	91	1989 – 1994
LEP-II	e⁺e⁻collider, CERN	209	1995 – 2000
HERA-I	e⁻p collider, DESY	27 + 800	1992 – 2000
HERA-II	e⁻p collider, DESY	27 + 920	2002 – 2007
Tevatron, Run I	$par{p}$ collider, Fermilab	1800	1987 – 1996
Tevatron Run II	$par{p}$ collider, Fermilab	1960	2002 – 2011
LHC, phase I	pp collider, CERN	7000	2010 – 2012
LHC, phase II	pp collider, CERN	14000	2014 –

- Highlights:
- Phase 1: Higgs boson -- discovered July 2012
- Two year shutdown followed by Phase 2, which started in 2015

Н

LHC Layout

- 8 crossing interaction points (IP's)
 - ATLAS, ALICE, CMS, LHCb experiments
- Accelerator sectors go in between the IP's
 - Sector 23 goes between 2 and 3, sector 34 goes between 3 and 4 etc.

LHC Parameters

Quantity	number
Circumference	26 659 m
Dipole operating temperature	1.9 K (-271.3°C)
Number of magnets	9593
Number of main dipoles	1232
Number of main quadrupoles	392
Number of RF cavities	8 per beam
Nominal energy, protons	7 TeV
Nominal energy, ions	2.76 TeV/u (*)
Peak magnetic dipole field	8.33 T
Min. distance between bunches	~7 m
Design luminosity	$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
No. of bunches per proton beam	2808
No. of protons per bunch (at start)	1.1×10^{11}
Number of turns per second	11 245
Number of collisions per second	600 million

(*) Energy per nucleon

Proton Bunches

- Each beam is made up of bunches of protons
 - Each bunch is approximately a cylinder

- Effective Area (A) of a bunch
 - A = 0.2 mm far away from collision points
 - A = 16 µm at the collision or interaction point (IP)
 - Bunches get squeezed by quadrupole magnets as they approach IP
- After doing some math
 - Effective number of bunches around a 27 km ring = 2808
 - Since they are moving close to speed of light, the spacing between bunches arriving at IP is ~ 25 ns

Event Rate

Event

- Any physical process that is allowed by nature and which obeys conservation laws (e.g., qq → Hγ)
- Cross Section (σ)
 - Probability that an event occurs (units of 1b = 10⁻²⁴ cm²)
 - Rare processes have small cross sections
- Luminosity = \mathcal{L}
 - Ability of the particle accelerator to produce the required number of interactions (cm⁻² s⁻¹)
- Event Rate

•
$$\dot{n} = \mathcal{L}\sigma$$

Example 1

- Find the rate of inelastic pp collisions at 14 TeV
 - L = 10³⁴ cm⁻² s⁻¹
 - $\sigma \sim 80 \text{ mb} = 80 \text{ x} 10^{-3} \text{ x} 10^{-24} \text{ cm}^2$ (at $\sqrt{s} = 14 \text{ TeV}$)
 - Event Rate = $\sigma L = 80 \times 10^{(34-3-24)} \text{ s}^{-1} = 80 \times 10^7/\text{s}$

Example 2

- Find the event rate for the process $qq \rightarrow Zh$
 - L = 10³⁴ cm⁻² s⁻¹
 - $\sigma \sim 50 \text{ fb} = 50 \text{ x} 10^{-15} \text{ x} 10^{-24} \text{ cm}^2$ (at $\sqrt{s} = 14 \text{ TeV}$)
 - Event Rate = $\sigma L = 50 \times 10^{(34-15-24)} \text{ s}^{-1} = 5 \times 10^{-4}/\text{s}$
- At this rate, how long does it take to observe 100 events?
 - t = 100/ (5 x 10⁻⁴/s) ~ 55 hours or > 2 days

Center of Mass Energy √s

$$a(p_1) + b(p_2) \longrightarrow c(p_3) + d(p_4)$$

• $2 \rightarrow 2$ collision (scattering)

- p₁, p₂ are the four momenta of incoming particles (a,b)
- p₃, p₄ are the four momenta of outgoing particles (c,d)
 - Defined as $s = (p_1 + p_2)^2 = (p_3 + p_4)^2 = 4E^2$ (Lorentz-invariant)
 - $\sqrt{s} = (E + E)$ which is the combined energy of the incoming particles as seen from the center-of-mass reference frame.
 - For LHC a=proton, b=proton, E = 7 TeV, \sqrt{s} = 7+7 = 14 TeV

Cyclotron Frequency

Cyclotron

• For small values of velocity ($\beta = v/c < 0.2$) this is a perfectly valid

Synchrotron

- We usually accelerate particles close to the speed of light $\beta \sim .99$
- Relativistic correction to mass (replace m by γm_0)
- As energy increases, f_c is no longer a constant!
 - f_c becomes smaller, *i.e.*, particles take longer to go around!

01/15/2016

Packing a Punch

- Bunches of Protons
 - We need protons to be in a close bunch. Why?
 - in order to maximize collisions when the bunches "cross over" (*i.e.*, collide)

Radiofrequency (RF) Cavities

- Oscillating voltage at 400 MHz (radio frequency)
- Help keep the protons to remain closely packed "bunches"
- In addition, the bunches receive a "kick" in the forward direction
 - every time they pass one of these cavities they gain additional 16 MeV
 - At close to the speed of light, they complete **11245 laps in one second!**
 - To get from 0.45 TeV to 7 TeV, it takes about 37 seconds!

01/15/2016

Bending Using Dipoles

- The bending of protons occurs due to the transverse magnetic field
- The dipole magnet bends the protons and keeps them along the circular track just like a prism

F

B

Focusing using Quadrupoles

• Imagine a bunch of protons

- Yellow line indicates the path
- First quadrupole magnet squeezes the bunch close together in the XY plane
- Second quadrupole magnet does the same in YZ plane
- This process continues to keep the bunch of protons within the vacuum tube in which they are circling around
- LHC has a total of 858 quadrupoles

Betatron Function

LHC

Nominal Trajectory (s)

- Is defined by the dipoles
- If we consider the protons in a bunch, they follow the nominal trajectory

• Lateral Deviation (x)

- There are deviations in the XY and XZ planes from nominal
 - they oscillate around the nominal trajectory

Beta function β(s)

 Describes the lateral shift and gives us a <u>"beam envelope"</u> which would contain the protons in the bunch.

$$x(s) = A\sqrt{\beta(s)} \sin\left(\psi(s) + \delta\right)$$

$$\psi(s) = \oint_0^s \frac{ds}{\beta(s)}$$

Number of oscillations for one turn => TUNE

Betatron Function

Trajectories over multiple turns

Conceptual Understanding

- Betatron function is the bounding envelope of the beam
 - You can think of it as the amplitude of the sine wave
 - Strong closely spaced quadrupoles lead to
 - Small $\beta(s)$, lots of wiggles
 - Weak sparsely spaced quadrupoles lead to
 - Large $\beta(s)$, fewer wiggles

Emittance

Definition

- x' vs x is a "phase space"
- At any point along the trajectory, each particle can be represented by a position in this phase-space
- The collection (ensemble) of all the protons will be inside an ellipse with a certain area. <u>This area is called</u> <u>"emittance"</u>
- For a Gaussian distribution the RMS of emittance contains 39% of protons at LHC

$$A = 4\pi\sigma_x\sigma_y \approx \left(2\sqrt{\epsilon\beta}\right)^2$$

$$\epsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

http://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.complex_movement

Luminosity

• Luminosity is a function of

- number of protons in each bunch (N₁, N₂)
- Effective area of collision at interaction point (A)
- Bunch crossing frequency (f)

$$\mathcal{L} = f \frac{N_1 N_2}{A} = f \frac{N_1 N_2}{4\pi \sigma_x \sigma_y}$$

Luminosity at IP

- Accelerator physicists often express luminosity as a function of
 - Betatron function and Emittance
- The bunches are squeezed / focused at IP
 - Hourglass effect
 - Crossing angle
 - Betatron function $\beta \rightarrow \beta^*$

Increasing Luminosity

