Linear Motion

Dr. Venkat Kaushik
Phys 211, Lecture 5, Sep 03, 2015

Clicker Question 1 (30 s)

TRIP 1:

An automobile travels on a straight road for 1 mi at $20 \mathrm{mi} / \mathrm{hr}$

How far (in mi) did the automobile travel during trip 1?

Answer: 1 mi

Clicker Question 2 (30 s)

TRIP 2:

The same automobile travels further on the same road for another 2 mi at $40 \mathrm{mi} / \mathrm{hr}$

How far (in mi) did the automobile travel during trip 2?

Answer: 2 mi

Clicker Question 3 (30 s)

TRIP 1: 1 mi at $20 \mathrm{mi} / \mathrm{hr}$ TRIP 2: 2 mi at $40 \mathrm{mi} / \mathrm{hr}$

What is the average speed (in mi/hr) for the combined trips?

> Total distance: $1+2=3 \mathrm{mi}$
> Total time: $(1 / 20+2 / 40) \mathrm{hr}=1 / 10 \mathrm{hr}$
> Avg Speed $=3 \mathrm{mi} /(1 / 10 \mathrm{hr})=30 \mathrm{mi} / \mathrm{hr}$

Clicker Question 4 (30 s)

TRIP 1: 1 mi at $20 \mathrm{mi} / \mathrm{hr}$ TRIP 2: 2 mi at $40 \mathrm{mi} / \mathrm{hr}$

If it made a pit stop for gas for 20 minutes between the trips, the average speed of the combined trip

1. INCREASES
2. DECREASES
3. STAYS THE SAME
4. CANNOT BE DETERMINED

1D Motion

- Instead of 3 dimensions (x, y, z), we deal with one
- We arbitrarily choose (say) x-axis/origin our choice to describe motion
- In this special case, all our vectors have one component, the x-component
- We can drop the subscript (x) and implicitly assume motion in 1D
- They take on one of two values (positive or negative), drop the vector notation since it's assumed to be along $+x$ (positive) or $-x$ (negative)

$$
\begin{aligned}
& v_{\text {avg }}=\frac{\Delta x}{\Delta t} \quad v_{\text {inst }}=\frac{d x}{d t} \\
& a_{\text {avg }}=\frac{\Delta v}{\Delta t} \quad a_{\text {inst }}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}
\end{aligned}
$$

1D: Constant Acceleration

- Assume constant acceleration

- $a_{\text {avg }}=a_{\text {inst }}=a$ (any constant)
- For free fall close to earth's surface, $a=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ directed toward center of the earth

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}} & =a \\
\int_{t=0}^{t=t} \frac{d^{2} x}{d t^{2}} d t & =a \int_{0}^{t} d t \\
\left|\frac{d x}{d t}\right|_{0}^{t} & =a t \\
v-v_{0} & =a t \\
\Rightarrow v & =v_{0}+a t
\end{aligned}
$$

Graphical Solution

Problems

- We worked on a few problems for 1D motion from Chapter 2

