PHY 721 - Problem Set 7

- 1. $\mathrm{SU}(\mathrm{N})$ is a continuous group of all $\mathrm{N} \times \mathrm{N}$ matrices which are unitary and have determinant +1 . If we define an element of $\mathrm{SU}(\mathrm{N})$ as $U(\vec{\theta})$ where $\vec{\theta}$ is the n-component vector of continuously variable parameters, we may also define the generators of the group by

$$
\left.G_{i} \equiv i \lim _{\delta \theta_{i} \rightarrow 0}\left(\frac{U\left(0, \ldots, \delta \theta_{i}, \ldots, 0\right)-I}{\delta \theta_{i}}\right) \equiv i \frac{\partial U}{\partial \theta_{i}}\right|_{\vec{\theta}=0}
$$

where the identity element I is the element for which $\vec{\theta}=0$. Thus, $U(\vec{\theta})=\exp (-i \vec{\theta} \cdot \vec{G})$.

1. How many parameters n does $\mathrm{SU}(\mathrm{N})$ have?
2. Denote the elements of the unitary matrices by $U_{i j}$. Elements of the matrices infinitesimally different from the identity matrix may be written as

$$
U_{i j}=\delta_{i j}+d u_{i j}
$$

From the properties of unitarity and +1 determinant derive conditions on the $d u_{i j}$. Show that the matrices composed of the $d u_{i j}$ must be traceless and antiHermitian. Thus show that the generators of $\mathrm{SU}(\mathrm{N})$ are Hermitian and traceless.

