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Steps in the Negative-Differential-Conductivity Regime of a Superconductor
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Current-voltage characteristics were measured in the mixed state of Y1Ba2Cu3O72d superconducting
films in the regime where flux flow becomes unstable and the differential conductivity dj�dE becomes
negative. Under conditions where its negative slope is steep, the j�E� curve develops a pronounced stair-
caselike pattern. We attribute the steps in j�E� to the formation of a dynamical phase consisting of the
successive nucleation of quantized distortions in the local vortex velocity and flux distribution within the
moving flux matter.
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In a type II superconductor, a magnetic field H above
the lower critical value Hc1 introduces flux vortices con-
taining an elementary quantum of flux Fo � h�2e, and
interactions between the vortices tend to align them into a
uniform lattice [1]. Extrinsic forces due to impurity pin-
ning, thermal fluctuations, or dynamic melting can result in
a disordered solid or liquid state instead of a crystalline lat-
tice [2]; however, long-range repulsions between the vor-
tices will still enforce a relatively uniform density. The
system under study consists of a superconducting film in a
perpendicular applied flux density Bo along ẑ, with a trans-
port electric current density j and electric field E along ŷ
in the plane of the film. The transverse component of E is
negligible for this discussion and the vortices move with
velocity yf predominantly along x̂.

A transport current exerts a Lorentz driving force FL �
j 3 Fo on the vortices and the motion is opposed by a vis-
cous drag Fd � 2hvf, where h is the coefficient of vis-
cosity. If we assume that pinning forces Fp are negligible
(because FL ¿ Fp), then the steady state motion reflects a
balance between driving (FL), drag (Fd ), and elastic forces
(Fe) on each vortex. For a perfectly uniform distribution,
the net elastic force on each vortex vanishes, resulting in
free flux flow [3]. Then jFo � hyf producing an Ohmic
response approximated by [2,4]: rf�rn � B�Hc2�T�.

A different scenario prevails at ultrahigh dissipation lev-
els and electric fields sufficient to alter the electronic dis-
tribution function and/or the electronic temperature. Here
j�E� becomes nonlinear and can develop an unstable re-
gion with negative differential conductivity (NDC) (region
“C” in Fig. 1). Such unstable behavior and NDC has been
predicted by Larkin and Ovchinnikov (LO) for the regime
near Tc [5], and has been experimentally well established
[6,7]. In the LO mechanism, a nonequilibrium electronic
distribution function leads to shrinkage of the vortex core
by removal of quasiparticles from its vicinity [5,6]. In the
opposite regime of T ø Tc we have observed a qualita-
tively different type of instability [8,9] that seems to result
from a temperature differential between the electronic sys-
tem and lattice while maintaining an equilibriumlike dis-
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tribution function (because electron-electron scattering is
more rapid than electron-phonon scattering at low T). In
our low-temperature instability the vortex expands rather
than shrinks, and viscous drag is reduced because of a soft-
ening of gradients of the vortex profile rather than a re-
moval of quasiparticles. The standard LO instability near
Tc occurs at values j� and y� � E��B (see Fig. 1) that are
B independent, whereas in our low-temperature instability
j� and y� have a �1�

p
B dependence. This plays an im-

portant role in the appearance of a staircase at low tempera-
tures but not at the higher temperatures of the previously
well studied LO phenomenon. Theoretical and experimen-
tal details of the low-temperature instability are discussed
elsewhere [8,10].

Figure 1 suggests a qualitative picture of how the drag
component �hy� of the j�E� response might vary with E
over its entire range. After the first “hump” (regions A,
B, and C) because of a reduction in h by the mechanisms
mentioned above, j�E� will rise again when yf reaches
some limiting value such as y` � j�tD, where j �
1.5 nm is the coherence length and tD � h̄�D � 4.7 3

10214 s is the order-parameter relaxation time. If the
vortex density is nonuniform, an additional elastic term
appears in j, namely j � �hy 2 Fe��Fo. We shall refer
to the j�E� curve of Fig. 1 as the primitive curve, which
applies to a hypothetical ensemble of uniformly packed
vortices moving with identical velocities; an actual j�E�
will not follow this behavior since, upon encountering
a negative slope, the flux matter will become unstable
and undergo a phase transition, such that at any given
time there exist multiple vortex velocities (resulting in
a composite response) and a nonuniform vortex density
(resulting in elastic corrections). In effect some vortices
will be traveling on the second positive slope “E” of
Fig. 1 with yf � y` (in regions with reduced vortex
density) and the rest will be traveling at a reduced velocity
y1 , y� resulting in restabilization. Below we calculate
the expected composite response for one particular flux
structure and show that it leads to a staircase in a natural
way in rough agreement with the data.
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FIG. 1. Schematic diagram for a primitive j�E� curve for mov-
ing flux vortices distributed with uniform density and moving
with the same velocity. The net elastic force Fe on each vor-
tex vanishes and the Lorentz driving force FL is balanced by
the viscous drag Fd so that j � hy�Fo . Experimentally only
the regime “A” is accessible. Beyond the peak at “B”, unstable
dynamics destroys the perfect spatial homogeneity of the vor-
tex distribution and leads to nonvanishing elastic forces so that
j � �hy 2 Fe��Fo . Now vortices travel in differing elastic
environments and at unequal velocities such that each vortex is
traveling on either positive slope “A” or “E” on the primitive
j�E� curve appropriate to its local instantaneous environment.
The positive slope “E” arises upon reaching some limiting ve-
locity y` , j�tD, and “F” is entered when the sample is driven
normal.

The samples are c-axis oriented epitaxial films of
Y1Ba2Cu3O72d on (100) LaAlO3 substrates with Tc’s
around 90 K and of thickness t � 90 nm. Electron-beam
and optical-projection lithographies, together with wet
etching in �1% phosphoric acid, were used to pattern
bridges of widths w � 4 mm and lengths l � 90 mm.
At the end of the lengthy fabrication, each microbridge is
inspected by a variety of high-resolution optical probes
for uniformity of width to ensure high reproducibility.
Altogether ten samples were studied at 12 temperatures
(1.6, 2.2, 6, 7, 8, 10, 20, 27, 35, 42, 50, 80 K) and at 11
flux densities (0.1, 0.2, 0.5, 1, 1.5, 2, 10, 11, 13, 13.5,
14 T). We always observe an instability with steps in
the NDC region for all temperatures below Tc�2 and for
B values in the 1–14 T range. The electrical transport
measurements were made with a pulsed constant voltage
source, preamplifier circuitry, and a digital storage oscil-
loscope. The pulse rise times are about 100 ns with a
duty cycle of about 1 ppm, resulting in effective thermal
resistances of order 1 nK cm3�W. The ability to hold the
voltage constant across the sample allows investigation of
the j�E� curve in the NDC region; however, once dj�dE
becomes negative there will be a jump in the voltage until
the chordal resistance of the sample has risen above the
source impedance of the voltage source (including the
resistance of the leads and contacts) allowing a stable
steady state. Such forbidden gaps in E are visible in
the last data plot at the onset of NDC. Each j�E� curve
typically consists of 1000 separate points and each point
requires averaging over several hundred pulses to obtain
an adequate signal-to-noise ratio (SNR), so that a single
curve takes several days to measure. Note that the j values
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in the experiment are an order of magnitude lower than the
depairing current density [11]. Further details about the
experimental techniques are discussed elsewhere [10,12].

Figure 2 shows some examples of measured staircase
patterns in the NDC regime. We found such patterns to be
ubiquitous under most conditions of Bo and T (not close
to Tc). Figure 2(a) shows the behavior at 11 T and 27 K.
The main step features are seen to be reproducible between
curves measured a week apart in opposite directions of
changing E. The absence of hysteresis is expected from the
negligible role of pinning in strongly driven flux motion.
Panel (b) shows 50 K 1 T j�E� curves for two different
samples (sample X was measured 23 days after sample Z).
Within the scatter and uncertainty in the absolute j values
(due to uncertainty in the sample widths used to calculate j
from I), there appears to be some consistency in the main
step features. The steepest NDC and most pronounced
staircase patterns were observed at temperatures around

FIG. 2. (a) Experimental j�E� curves for sample X at Bo �
11 T and T � 27 K. The two curve sets were measured in
increasing (up) and decreasing (down) E to confirm repro-
ducibility and absence of hysteresis. (b) Magnified view of ex-
perimental j�E� curves for two different samples at 50 K and
1 T (sample X was measured 23 days after sample Z ). The step
features show some consistency within the scatter of the data
and uncertainties in the two sample widths used to calculate j.
(c) 50 K low-B j�E� curves for sample X over an extended E
range showing overall linearity in 1�E; the solid line represents
j � 27 1 375�E.
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one half of Tc and flux densities around 1 T (where the
intervortex separation a �

p
Fo�B becomes comparable

to the penetration depth). Figure 2(c) shows 50 K curves
for sample X at three B values over an extended range of E.
The solid line fit indicates linearity in 1�E over the steep
NDC portion. Other observed features are a convergence
of curves in their NDC regions for different Bo’s (at fixed
T ) and a growth in horizontal step size with increasing E.

Let us now consider the nature of the transition in the
flux matter when the imposed electric field Eo exceeds
E� and enters the NDC region “C” of the primitive curve
(Fig. 1). Since all the vortices could not be moving uni-
formly with yf � Eo�Bo (for they would all be unstable)
the flux matter must reorganize itself by the creation of
defects in the regular vortex structure. The exact nature
of the defects will depend on the vortex state. In a vor-
tex solid there can be pairs of edge dislocations of differ-
ent signs, or defect-interstitial pairs that conserve the total
flux. If the moving vortex system is a liquid, the defect can
be a finite magnetic spot or domain with a different flux
density, since redistribution of a magnetic flux in a vortex
liquid does not involve significant energy barriers [13]. In
this Letter we present a simple calculation based on the
magnetic domain approach, in order to provide a simple
physical explanation of the effect. A detailed and more
rigorous approach, which considers the distinction among
the different possibilities listed above, will be presented
elsewhere. In the reorganized flux structure some vortices
at any given time will move on the second positive slope
“E” with yf � y` while others move on the first slope
“A” with y1 , y�, such that the composite macroscopic
electric field across a sample length averages to Eo. The
reorganized flux structure is influenced by several condi-
tions: (1) The ends of the sample are at a fixed potential
difference so the average electric field along any longitudi-
nal path is close to the applied Eo ; (2) the current density
integrated along any longitudinal path is approximately
constant due to phase coherence (allowing for small varia-
tions in the vector potential); (3) the average flux density
in the sample must equal the applied value Bo , otherwise
the demagnetizing fields would diverge (this means that if
defects are formed that have a suppressed local B, the flux
density B1 in the outside bulk will increase to conserve the
total flux); (4) extended low B defects will tend to be sta-
tionary to reduce circulating electric fields around them,
which would violate the first condition; (5) elastic forces
between adjacent vortices, along with asymmetry in de-
magnetization (since l ¿ w), will tend to discourage rela-
tive side-by-side motion and promote modulations in yf

and B that traverse the entire length of the sample; and
(6) bulk elastic forces within the vortex matter will dis-
courage continuous growth of defects but instead favor dis-
continuous nucleation of uniformly spaced defects of the
smallest possible size (�1 lattice constant).

Considering the above guidelines, we estimate below the
composite j�E� response for one simplified static scenario
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of the defect structure. We would like to emphasize that
this is not presented as a comprehensive or unique solu-
tion to the vortex reorganization problem, but used only
to provide a simple physical explanation of the observed
staircase behavior. Referring to Fig. 1, let the applied
electric field just exceed the peak value E�. The func-
tional form of the primitive j�E� curve in the peak region
is given by [8,10] j � �snHc2�B�E��1 1 �E�E��2� with
E� �

p
2rnBnD��Hc2te� and j� �

p
nDHc2��2rnBte�.

Some vortices are forced to move at higher velocity in
order to restore stability. For the purpose of obtaining a
rough estimate, let us assume that vortices move at y`

when they cross a longitudinal channel with reduced local
B and enlarged flux lattice spacing A (the actual structure
may consist of an array of smaller entities that nucleate
at the sample edges and migrate inward.) The smallest
width of this channel, consistent with continuity of flux
and constancy of longitudinal E, is a single lattice spac-
ing A � a�y`�y1�, where a and y1 are the lattice spac-
ing and velocity of the “bulk” vortex matter outside the
channels. As soon as the first defect is nucleated, the
flux density B1 in the bulk increases discontinuously [14]
from Bo to Bow��w 2 A� and y1 drops from Eo�Bo to
Eo�w 2 A���Bow�. This immediately stabilizes flux flow
in the bulk since E� ~

p
B increases and these vortices

drop back on the positive slope “A” (in Fig. 1). As the
applied Eo is increased further nothing more happens un-
til y1 reaches the new peak value E��B1. Then a second
defect is nucleated and the process keeps repeating itself
until the defects fill about half the sample area, at which
point it becomes energetically favorable to continuously
expand existing defects. The top of each step corresponds
to j � j��B1� for each new B1. Since j� ~ 1�

p
B and

E� ~
p

B, the staircase shows an overall downward trend
with j � 1�E dependence that does not depend on Bo

(causing curves with different applied Bo to converge).
Both of these behaviors can be seen in Fig. 2(c). Fig-
ure 3 shows experimental and numerically computed j�E�
curves at T � 50 K and B � 1, 1.5, and 2 T. The two sets
of curves show similar qualitative trends and have roughly
comparable magnitudes. Note that the curves computed
from the model have no adjustable parameters; the val-
ues for 1�sn � rn � 57 mV-cm and Hc2 � 120 T come
from the literature [10,15], and E� � 35 V�cm (at one
value of B � 1.5 T) is taken from the measurement.

To summarize, we have investigated the transport
response of a superconductor into the regime of negative
differential conductivity beyond the low-temperature in-
stability. A qualitatively new behavior was observed in the
form of steps in the j�E� curve. The observed behavior
is consistent with the restabilization of a moving vortex
distribution by the formation of a dynamical phase with
distortions in the local flux density and vortex velocity.
While we do not undertake a detailed theoretical investi-
gation of the exact nature of the dynamical phase, we hope
our experimental results will stimulate such further work.
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FIG. 3. (a) Experimental j�E� curves for sample X at T �
50 K and B � 1, 1.5, and 2 T. In their NDC regimes, the curves
collapse onto an approximately common behavior, where j is
roughly linear in 1�E. There are forbidden gaps in E just beyond
the peak, when the sample’s resistance is less than the voltage
source impedance, as discussed in the text. (b) Theoretical j�E�
curves for the same T and B’s, calculated from the simple model
based on dynamical flux reorganization (the model has no fitting
parameters).

Recently other interesting but separate effects have been
seen in the highly driven vortex state by the Huebener
group, which include time dependent oscillations and hys-
teretic steps resulting from tunneling between neighboring
vortices [16]. The steps in our effect are time independent
and nonhysteretic, and are analogous to the Gunn effect in
semiconductors, where electric-charge modulations lead
to steps in j�E� in the NDC regime.
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