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The transport of electrical current through a superconductor falls into three broad regimes: non-
dissipative, dissipative but superconducting, and normal or non-superconducting. These regimes
are demarkated by two definitions of critical current: one is the threshold current above which the
superconductor enters a dissipative (resistive) state; the other is the thermodynamic threshold above
which the superconductivity itself is destroyed and the superconducting order parameter ∆ vanishes.
The first threshold defines the conventional critical current density jc and the second defines the
depairing (or pair-breaking) current jd. Type II superconductors in the mixed state have quantized
flux vortices, which tend to move when acted upon by the Lorentz driving force of an applied
transport current. In such a mixed state the resistance vanishes only when vortices are pinned in
place by defects and the applied current is below the threshold jc required to overcome pinning
and mobilize the vortices. Typically jd�jc and a direct experimental measurement of jd over the
entire temperature range (0 ≤ T ≤ Tc) is prohibited by the enormous power dissipation densities
(p ∼ 1010– 1012W/cm3) needed to reach the normal state. In this work, intense pulsed signals were
used to extend transport measurements to unprecedented power densities (p ∼ 109 − 1010 W/cm3).
This together with MgB2’s combination of low normal-state resistivity (ρn) and high transition
temperature (Tc) have permitted a direct estimation of jd over the entire temperature range. This
review describes our experimental investigation of current-induced depairing in MgB2, and provides
an introduction to the phenomenological theories of superconductivity and how the observations fit
in their context.
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Keywords: Critical current, pair breaking, depairing, superconductor, superconductivity, flux, fluxon, vortex,
magnesium diboride, mgb2

I. INTRODUCTION

When a superconductor is cooled below some transi-
tion temperature Tc, it undergoes a phase transition lead-
ing to the formation of a superconducting state wherein
its charge carriers correlate and condense into a coher-
ent macroscopic quantum state. In the superconduct-
ing state, the system expels magnetic flux upto magnetic
field values below Hc, the thermodynamic field. In type
II superconductors, the flux expulsion is partial for fields
between the lower and upper critical fields, Hc1 and Hc2

respectively. The superconducting state is also charac-
terized by an absence of resistivity for current densities j
below some critical value jc. In type II superconductors,
there is partial resistivity for j values between jc and jd,
where jd is the pair-breaking or depairing current den-
sity1.

The formation of this state is governed principally
by a competition between four energies: condensation,
magnetic-field expulsion, thermal, and kinetic. The order
parameter ∆, that describes the extent of condensation
and the strength of the superconducting state, is reduced

1 Type I superconductors can also exhibit partial resistivity in the
superconducting state because of fluctuations, presence of a large
(H >Hc) current induced self field at the surface (Silsbee’s rule),
phase slippage as one approaches the phase boundary, or motion
of magnetic domains in the intermediate state.

as the temperature T , magnetic field H, and electric cur-
rent density j are increased. The boundary in the T -H-j
phase space that separates the superconducting and nor-
mal states is where ∆ vanishes, and the three parame-
ters attain their critical values Tc2(H, j), Hc2(T, j), and
jd(T,H). jd sets the intrinsic upper limiting scale for
supercurrent transport in any superconductor.

Close to Tc, jd(T ) has been investigated in several
systems1–3. In a few materials4,5, jd(T ) has been mea-
sured down to about 0.2Tc. Here we review our investi-
gation of current-induced pair-breaking in MgB2, which
represents a complete (0 � T � Tc) investigation of jd
by a direct transport method.

II. THEORETICAL BACKGROUND

The magnitude and temperature dependence of the
pair-breaking current density can be adequately de-
scribed by phenomenological theories of superconduc-
tivity, such as the London theory and the Ginzburg-
Landau (GL) theory. In a microscopic theory such as
the Bardeen-Stephen-Cooper (BCS) theory, experimen-
tal quantities are calculated from microscopic parameters
such as the strength of the effective attractive interaction
that leads to Cooper pair formation and the density of
states at the Fermi level. Often these microscopic pa-
rameters are not sufficiently well known. In phenomeno-
logical theories, connections are made between the differ-
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ent observables from contraints based on thermodynamic
principles and electrodynamical properties of the super-
conducting state. Below we give a simplified introduc-
tion to the different theoretical approaches for estimating
the depairing current density and its temperature depen-
dence.

A. London theory

1. Basic framework

The London theory6 of superconductivity provides a
description of the observed electrodynamical properties
by supplementing the basic Maxwell equations by addi-
tional equations, which contrain the possible behavior to
reflect the two hallmarks of the superconducting state—
perfect conductivity and Meissner effect. Note that these
properties hold only partially when mobile vortices are
present.

An ordinary metal (normal conductor) requires a driv-
ing electric field E to maintain a constant current against
resistive losses. In the simple Drude picture, this pro-
duces Ohm’s law behavior, j = σE, with a conductivity
given by σ = ne∗2τ/m∗, where n is the number density of
charge carriers, and e∗ and m∗ are their effective charge
and mass respectively.

A superconductor can carry a resistanceless current
and so an electric field is not required to carry a persistent
current. Instead E in a perfectly conducting state causes
a ballistic acceleration of charge so that ∂j/∂t ∝ E. If the
number density of effective charge carriers (pairs) partic-
ipating in the supercurrent is n∗s, then j = n∗se

∗vs, where
vs is the carrier (superfluid) velocity, and

E =
(

m∗

n∗se∗2

)
∂j

∂t
. (1)

This is the first London equation, which reflects the dis-
sipationless acceleration of superfluid.

The second property that needs to be accounted for is
the expulsion of magnetic flux by a superconductor. The
magnetic field is exponentially screened from the interior
and hence follows a spatial dependence

∇2H = H/λ2, (2)

where λ is a screening length called the London pen-
etration depth. Together with the Maxwell equation
∇×H = 4πj/c, this implies the following condition be-
tween H and j:

H = −
(

4πλ2

c

)
(∇× j). (3)

This is the second London equation and it describes the
property of a superconductor to exclude magnetic flux
from its interior. The prefactors in the two London equa-
tions are related through the Maxwell equations. Taking

the curl of both sides of Eq. 1 and replacing ∇×E on the
left side with − 1

c
∂H
∂t and substituting for ∇ × j on the

R.H.S. with Eq. 3 gives the expression for the penetration
depth as

λ =
√
m∗c2/4πn∗se∗2 =

√
mc2/4πnse2, (4)

where the pair quantities with asterisks have been re-
placed with their more common single-carrier counter-
parts (2n∗s = ns, e∗ = 2e, and m∗ = 2m) in the
last step2. In the MKSA (SI) system, Eq. 4 becomes
λ =

√
10m∗/4πn∗se∗2.

A third relationship of importance in the discussion of
the pair-breaking current concerns the thermodynamic
critical field Hc. When flux is expelled, the free energy
density is raised by the amount H2/8π. The critical flux
expulsion energy (for the ideal case of a type I super-
conductor with a non-demagnetizing geometry and di-
mensions large compared to the penetration depth) cor-
responds to the condition

fc = fn − fs = H2
c /8π (5)

where the L.H.S. of the equation represents the condensa-
tion energy—the difference in free energy densities fn−fs

between the normal and superconducting states.

2. Depairing current density in the London framework

We now have all the ingredients we need to obtain the
usual London estimate of the depairing current density.
Taking jd to represent the condition when the kinetic
energy density equals the condensation energy, we have
1
2n

∗
sm

∗v2
s = 1

2m
∗j2d/(n

∗
se

∗)2 = f = H2
c /8π. Substituting

for λ (Eq. 4) then gives the required expression for the
depairing current density

jd =
cHc

4πλ
. (6)

In practical MKSA units, Eq. 6 can be written as jd =
(107/4π)(Bc/λ), where jd is in A/m2, Bc is the ther-
modynamic critical flux density in Teslas and λ is the
penetration depth in meters.

Note that this derivation assumed that ns remains un-
changed as j approached jd. In reality ns diminishes as
the superconductivity is destroyed and the normal phase
boundary is approached. Hence Eq. 6 will be an overes-
timate for jd.

2 In subsequent expressions we retain the asterisk marked quan-
tities in our notation to maintain generality. This allows, for
example, the inclusion of band-structure effects on the effective
mass so that a more exact value of m∗ can be used rather than
simply taking the m∗ = 2m corresponding to the free-electron
model.
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B. Ginzburg-Landau theory

1. Basic framework

There are situations where a system’s quantum wave-
function cannot be solved for by usual means because the
Hamiltonian is unknown or not easily approximated. The
GL formulation is a clever construction that allows useful
information and conclusions to be extracted in such a sit-
uation where one cannot solve the problem quantum me-
chanically. For describing macroscopic properties—such
as jd that we are about to calculate—the GL theory is
in fact more amenable than the microscopic theory.

The idea is to introduce a complex phenomenogical or-
der parameter (pseudowavefunction) ψ = |ψ|eiϕ to rep-
resent the superconducting state. |ψ(r)|2 is assumed to
approximate the local density of superconducting charge
carriers ns(r). The free energy density fs of the supercon-
ducting state is then expressed as a reasonable function
of ψ(r) plus other energy terms. A “solution” to ψ(r) is
now obtained by the minimization of free energy rather
than through quantum mechanics. The unknown param-
eters of the theory are then solved in terms of measurable
physical quantities thereby providing contraints between
the different quantities of the superconducting state.

Close to the phase boundary, |ψ|2 is small and so fs can
be expanded keeping the lowest two orders of |ψ|2. First
let us consider the simplest situation where there are
no currents, gradients in |ψ|, or magnetic fields present.
Then we have

fs = fn + α|ψ|2 +
β

2
|ψ|4, (7)

where α and β are temperature dependent coefficients
whose values are to be determined in terms of measur-
able parameters. The coefficients can be determined as
follows. First of all for the solution of |ψ|2 to be finite
at the minimum free energy, β must be positive. Second,
for the solution of |ψ|2 to be non-zero, α must be neg-
ative. Since |ψ|2 vanishes above Tc, α must change its
sign upon crossing Tc. The minimum in fs occurs at

|ψ|2 = −α/β. (8)

Substituting this back in Eq. 7 and using the definition
of Hc (Eq. 5), Eq. 8 can be recast as

fc =
H2

c

8π
=
α2

2β
(9)

giving one of the connections between α and β and a
measurable quantity (Hc). A second connection can be
obtained by noting that n∗s in Eq. 4 can be replaced by
|ψ|2, taking it’s equilibrium value from Eq. 8

λ2 =
m∗c2

4π|ψ|2e∗2 =
−β
α

(
m∗c2

4πe∗2

)
. (10)

Solving Eqs. 9 and 10 simultaneously gives the GL coef-
ficients:

α = − e∗2

m∗c2
H2

cλ
2 and β =

4πe∗4

m∗2c4
H2

cλ
4 (11)

Next, the effect of fields and currents can be included in
Eq. 7 by adding terms corresponding to the field energy
density and kinetic energy of the current:

−fc = α|ψ|2 +
β

2
|ψ|4 +

1
2
|ψ|2m∗v2

s +
H2

8π

= α|ψ|2 +
β

2
|ψ|4 +

1
2m∗

∣∣∣∣
(

�

i
∇− e∗

c
A

)
ψ

∣∣∣∣
2

+
H2

8π
(12)

where vs is the superfluid velocity. If the amplitude |ψ|
is constant and only its phase ϕ varies spatially, then
vs = (�∇ϕ

m∗ − e∗A
cm∗ ). Also in the situation of interest to

us—currents of pair-breaking level—the gradient term is
much larger than the A term in the operator for velocity.
In this case vs ≈ �∇ϕ

m∗ .
It should be noted that the above derivation assumed

proximity to Tc only for the purpose that |ψ| be small so
that fs could be represented as a limited power series ex-
pansion. In “dirty” superconductors—superconductors
with a high impurity scattering rate—the approximate
validity of the GL expressions extends down to T � Tc.
In general, the expressions should be valid at all T as
long as |ψ| is small and the proper temperature depen-
dent values of α and β are used, as expressed through the
temperature dependencies of Hc and λ. The treatment
thus far assumes that charge carriers from only one band
contribute to the superconductivity, i.e., it is a SBGL
(single-band Ginzburg-Landau) theory.

2. Depairing current density in the SBGL framework

We can now derive jd by finding the value of j above
which |ψ| vanishes. First we consider the case when
H = 0. We will assume j to be uniform across the cross
section. We will justify this assumption later and look
in detail at the conditions when the assumption is valid.
Eq. 12 then simplifies to

−fc = α|ψ|2 +
β

2
|ψ|4 +

1
2
|ψ|2m∗v2

s . (13)

For zero vs, we saw earlier (Eq. 8) that the equilibrium
value of |ψ|2 that minimizes the free energy is |ψ∞|2 =
−α/β. For a finite vs minimization of Eq. 13 gives

|ψ|2 =
−α
β

(
1 − m∗v2

s

2|α|
)

(14)

with the corresponding supercurrent density

j = e∗|ψ|2vs =
−e∗α
β

(
1 − m∗v2

s

2|α|
)
vs. (15)
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The maximum possible value of this expression can now
be identified with jd:

jd(T ) =
−2e∗α

3β

(
2|α|
3m∗

)1/2

=
cHc(T )

3
√

6πλ(T )
(16)

where the GL-theory parameters were replaced by their
expressions in terms of the physical measurables Hc and
λ through Eqs. 11.

The approximate temperature dependence of jd can be
obtained by inserting the generic empirical temperature
dependencies Hc(T ) ≈ Hc(0)[1 − (T/Tc)2] and λ(T ) ≈
λ(0)/

√
[1 − (T/Tc)4] giving

jd(T ) ≈ jd(0)[1 − (T/Tc)2]
3
2 [1 + (T/Tc)2]

1
2 (17)

where

jd(0) = cHc(0)/[3
√

6πλ(0)] (18)

is the zero-temperature depairing current density. In
practical MKSA units, Eq. 18 can be written as jd(0) =
107 ×Bc(0)/[3

√
6πλ(0)], where jd is in A/m2, Bc is in T

and λ is in m.
For the dirty case, instead of Eq. 17, the temperature

dependence of Eq. 16 can be better approximated as1,4

jd(T ) ≈ jd(0)[1 − (T/Tc)2]
3
2 . (19)

Usually Hc can’t be measured reliably, but from the
relation

Hc =

√
Φ0Hc2

4πλ2
(20)

Eq. 18 can be recast as

jd(0) =

√
c2Φ0

216π3

(√
Hc2(0)
λ2(0)

)
, (21)

which in MKSA becomes jd(0) = 5.56 × 10−3 ×√
Bc2(0)/λ2(0), where jd is in A/m2, Bc2 is the upper

critical flux density in Teslas and λ is in meters.
Close to Tc, Eq. 17 reduces to jd(T ≈ Tc) ≈ 4jd(0)[1−

T/Tc]
3
2 . This can be inverted to give the shift in transi-

tion temperature Tc2(j) at small currents, with the well-
known j2/3 proportionality:

1 − Tc2(j)
Tc

≈
(

1
4

) 2
3
[

j

jd(0)

] 2
3

, (22)

where Tc ≡ Tc2(0). Note that if heat removal from the
sample is ineffective, Joule heating will give an apparent
shift ∆Tc ∝ ρj2, which is the cube of the intrinsic ∼ j2/3

depairing shift near Tc. Hence Joule heating is easily dis-
tinguishable from a pair-breaking shift. (The preceding
discussion is based on Refs. 7 and 1.)

C. GL formulation for a two-band superconductor

We now consider the two-band Ginzburg-Landau
(2BGL) applicable to a system such as MgB2 where two
bands contribute to condensates. In this case, the con-
densation energy density can be expressed as8–10

−fc =

{
α1|ψ1|2 +

β1

2
|ψ1|4 +

1
2m∗

1

∣∣∣∣
(

�

i
∇− e∗

c
A

)
ψ1

∣∣∣∣
2
}

+

{
α2|ψ2|2 +

β2

2
|ψ2|4 +

1
2m∗

2

∣∣∣∣
(

�

i
∇− e∗

c
A

)
ψ2

∣∣∣∣
2
}

+
{
ε[ ψ∗

1ψ2 + c.c.]
}

+
{
H2

8π

}
(23)

where the first two braces correspond to the free energy
contributions of the condensates of each band and the
third term corresponds to the interband interaction en-
ergy.

As before, for the case of no applied field and uniform
current distribution, this simplifies to

−fc =
{
α1|ψ1|2 +

β1

2
|ψ1|4 + α2|ψ2|2 +

β2

2
|ψ2|4

}

+
1
2

{
|ψ1|2m∗

1v
∗2
s1 + |ψ2|2m∗

2v
∗2
s2

}
+ ε
{
ψ∗

1ψ2 + c.c.
}
.(24)

The phases of the two condensates are locked together
since at equilibrium the interband free energy is mini-
mized when cos(φ1 − φ2) = 1 or −1 (for ε < 0 and ε > 0
respectively). Hence the superfluid momenta are equal,
m∗

1v
∗
1 = m∗

2v
∗
2 , and the superfluid velocities, v∗1 and v∗2 ,

will be similar to the extent that the effective masses are
similar.

Because of the rather large number of parameters in
Eq. 24, it is not very meaningful to derive an expression
for jd for direct quantitative comparison with the exper-
imental data. Rather we will take the SBGL expression
for jd in Eq. 16 and insert the actual measured temper-
ature dependencies of Hc and λ. We expect those em-
pirical temperature dependencies to account for modifi-
cations due to the presence of two bands. As will be seen
below, the experiment confirms this contention. Note
that for current flow in the ab plane (which is our exper-
imental situation) the stronger planar π band provides
the main contribution to s. In this case the behaviour
should qualitatively follow SBGL with the appropriately
modified parameters.

D. Depairing current from quasiparticle-energy
shift

In the previous derivations in the framework of phe-
nomenological theories, no account was taken of the su-
perconducting gap. As a final step in obtaining theoreti-
cal estimations of jd, let us consider how the supercurrent
is limited because of its effect on the superconducting
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gap. Unlike the GL treatments, this one is particularly
applicable to the T � Tc regime. In the microscopic the-
ory, the superfluid density does not decline continuously
as j and vs are increased. Rather, ns remains roughly
constant until vs reaches its depairing value1,7

vd =
∆

�kF
=

2�

πm∗ξ0
, (25)

which corresponds to the point when the shift, �kF .vs, in
the quasiparticle energies (QPE) equals the gap causing
the gap to vanish for those states. In Eq. 25, ξ0 is the
intrinsic BCS coherence length. The value of ξ deduced
from the upper critical field will be a lower bound on ξ0
since scattering reduces the effective ξ (in the dirty-limit
ξ ≈ √

ξ0l, where l is the mean-free path7). j remains
closely proportional to vs until vd, then ns drops pre-
cipitously so that the maximum current is only slightly
(2%) higher than the value when vs=vd. Thus to a good
approximation jd � e∗n∗svd. Combining this with Eq. 25
gives

jd � m∗c2∆
4πe∗λ2�kF

� c2�

2π2e∗λ2ξ0
. (26)

The first R.H.S. involves the parameters such as ∆ and
kF whose absolute values are not known accurately but
whose temperature dependencies are well established,
since kF is of course constant and the gaps have a tem-
perature dependence that is well described by the stan-
dard BCS function11,12. Hence from the first R.H.S. we
determine the temperature dependence of jd as

jd(T ) = jd(0)
(
λ2(0)
∆(0)

)
∆(T )
λ2(T )

. (27)

On the other hand, the second R.H.S. of Eq. 26 in-
volves parameters such as ξ0 whose absolute magnitude
is better known (from measurements of Hc2 and the re-
lation Hc2 = Φ0/2πξ2). Hence we use the second R.H.S.
of Eq. 26 to estimate the absolute magnitude of jd(0) as

jd(0) =
(
c2Φ0

8π5

) 1
2
√
Hc2(0)
λ2(0)

, (28)

which in MKSA becomes jd(0) = 9.19 × 10−3 ×√
Bc2(0)/λ2(0).

E. Microscopic calculation

Various authors have calculated jd(T ) from a micro-
scopic basis1,13,14. For arbitrary temperatures and mean
free paths, one must use the Gorkov equations as the
starting point. Kupriyanov and Lukichev15 have derived
jd(T ) from the Eilenberger equations, which are a simpli-
fied version of the Gorkov equations. This derivation is
beyond the scope of the present review, but a nice short-
ened version can be found in reference 4. The microscopic

calculation confirms the overall temperature dependence
predicted by GL and the two normalized curves differ
only slightly from each other (e.g., see Fig. 4 of reference
4).

F. Comparison between different theoretical
estimates

We will now compare the different theoretical esti-
mates of jd(0) obtained by the different approaches and
calculate their relative ratios from Eqs. 6, 18, 21, and 28.
The London estimate, as discussed earlier, should be an
overestimate. Its value is 1.84 times higher than the GL
estimate. Similarly, the estimate from QPE shift turns
out to be 1.65 times higher than GL. Since the QPE shift
calculation is based on a simple single isotropic gap, the
actual jd(0) will be different and somewhat lower. For
the very dirty (l � ξ0) and very clean (l 	 ξ0) limits, the
actual jd(0) is expected to be 0.67 and 0.82 times the Lon-
don estimate respectively1. Hence these estimates should
be correct at most to a factor-of-two accuracy. Errors in
the values of the parameters will further add to the inac-
curacy of the calculated value. So when comparing with
the experiment, an agreement to within half an order of
magnitude is about the best that can be expected.

III. EXPERIMENTAL METHODS

A. Samples

The samples are 400nm-thick c-axis oriented films of
MgB2 on sapphire. In this paper we show data on four
bridges, labelled S, M, N, and L with lateral dimensions
2.8 x 33, 3.0 x 61, 3.0 x 60, and 9.7 x 172 µm2 respectively.
The lateral dimensions are uncertain by ±0.7µm and the
mean thickness by ±50 nm. TEM (transmission elec-
tron microscopy) shows variations in thickness of about
δt/t ∼ 10%. The films were fabricated using a two-step
method whose details are described elsewhere16,17. An
amorphous boron film was deposited on a (11̄02) Al2O3

substrate at room temperature by pulsed-laser ablation.
The boron film was then put into a Nb tube with high-
purity Mg metal (99.9%) and the Nb tube was then sealed
using an arc furnace in an argon atmosphere. Finally,
the heat treatment was carried out at 900◦ C for 30 min.
in an evacuated quartz ampoule sealed under high vac-
uum. X-ray diffraction indicates a highly c-axis-oriented
crystal structure normal to the substrate with unde-
tectable impurity phases. Magnetization M(T ) curves
have a λ-limited transition width of 1.5K (Tc-spread <
0.2K). However, the aforementioned variations in thick-
ness produce a broadening of R(T ) with increasing j.
The films were photolithographically patterned down to
narrow bridges and in the case of one sample (N) the lead
areas were further delineated by mechanical scribing.
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The samples have a normal-state resistivity at room
temperature ρn(300K) ≈ 14µΩ-cm, which is about 7
times that found in clean single crystals18. The enhance-
ment appears to to be due to microscopic disorder (scat-
tering) and not just some extra series resistance at grain
boundaries, since Hc2 is also enhanced by about the same
factor over its values in single crystals18,19. Also mea-
surements of λ on these films show no evidence of grain-
boundary weak-linked behaviour, which would be mani-
fested as a non-linearity in response and as an increase
in the apparent absolute magnitude of λ, which were not
observed20.

B. Cryogenics

Two sets of apparatus were used for the measure-
ments. Samples S, M, and L were measured in an Oxford
Instruments(R) liquid-helium based vapour-flow cryostat
with a 16 Tesla superconducting magnet. Sample N was
measured in a Cryomech(R) pulsed-tube closed-cycle re-
frigerator and a water-cooled copper magnet. In the
latter case, the “zero field” could be made very small
(< 0.7 G) by shielding the sample region using mu-metal.
Lakeshore(R) diode and cernox sensors were employed for
the thermometry.

C. Electrical measurements

Low-current resistance measurements (I < 50µA)
were made by the standard four-probe DC technique.
Higher current measurements were carried out using a
pulsed technique with a four-probe configuration. A
pulsed signal source (capable of both constant-current
and constant-voltage modes) drives the signal through
the sample and a series standard resistor Rstd. The sig-
nals across the sample and Rstd are then detected with a
digital-storage oscilloscope. The temporal reproducibil-
ity of the system is ∼1 ns as can be evidenced from Fig. 1,
which shows two sets of measurements of I(t) and V (t).
The relative delay between rising edges of I(t) and V (t)
corresponds approximately to the extra length of wires
divided by the speed of light.

Pulse durations range 0.1–4 µs with a duty cycle of
about 1 ppm. About 100 pulses are averaged to reduce
the noise. A typical pair of current and voltage pulses is
shown in Fig. 2. The values of I and V used in subse-
quent analyses correspond to the flat plateaus of the pulse
waveforms. As these are time independent, the measure-
ment corresponds effectively to a DC measurement al-
beit over a shorter-than-usual duration. The computed
R(t) = V (t)/I(t), shown in Fig. 2, is seen to have a 50
ns rise time. The total duration of the pulse is not rel-
evant but the time at which the voltage or current is
measured since it turns on. Since the signals saturate to
well defined values by ∼100 ns, this is the effective dissi-
pation time τ that is relevant to the thermal calculations

FIG. 1: Rising edges of voltage and current (voltage across
Rstd) across an MgB2 bridge (sample N). The sample is in
the normal state at room temperature. The graph contains
two sets of measurements of I(t) and V (t) showing overlap
and temporal reproducibility to within about 1 ns.

FIG. 2: Pulse waveforms at high dissipation levels (j = 9.7
MA/cm2, E = 83 V/cm, and p = jE = 803 MW/cm3 on the
plateaus). The measurement was done on an MgB2 bridge
(sample S) just above Tc (at 42K). The resistance rises to
(90% of) its final value in about 50 ns from the (10%) onset
of I.

below. Some additional information on the electrical-
measurement setup can be found in a previous review
article21 and other recent papers22,23.

D. Heat conduction during pulsed measurements

We now look in more detail at the thermal processes in-
volved in the removal of heat from the sample24,25. Heat
generated in the film diffuses toward the interface with
the substrate essentially instantaneously. On the time
scale of nanoseconds, phonons transfer heat across the
interface between the film and substrate. Heat then dif-
fuses within the substrate in a matter of microseconds
and finally into the heat sink in milliseconds. Thus
for pulses of microsecond or shorter duration, the heat
doesn’t leave the substrate and for low duty cycles the
thermometer will not register a temperature rise. The
sample temperature rise is then composed of a tempera-
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FIG. 3: Pulse waveforms showing a time-dependent temperature rise at extreme dissipation levels (p > 1010 W/cm3). The
measurement was made on a 100 nm thick Y1Ba2Cu3O7 film on LaAlO3

22,23 at T=50 K and B=10 T. The left, middle, and
right panels show the current density, electric field, and power-dissipation density respectively.

ture gradient within the film, an abrupt temperature dif-
ference across the boundary, and a gradient within the
substrate. Each can be expressed as an additive compo-
nent of the thermal resistance Rth, which we will define
as the temperature rise ∆T per unit power density p.

The temperature variation within the film given by
∆T1(z) � (p/κf )(tz− z2/2) where (t− z) is the distance
of a point within the film from the interface, t is the film
thickness and κf is the thermal conductivity of the film.
Expressed as a thermal resistance this becomes

Rth1(z) � 1
κf

(
tz − z2

2

)
. (29)

For MgB2, κf = 0.1 and 0.4 W/K.cm at 10 K and 40
K respectively26,27. This yields an average Rth in the
midplane of the film (i.e., at z = t/2) of 6 nK.cm3/W at
10K and 1.5 nK.cm3/W near Tc.

Phonon mismatch at the interface between film and
substrate produces an abrupt temperature drop ∆T2 =
ptRbd, where Rbd is the thermal boundary resistance at
the film-substrate interface. This can be expressed as a
second component to Rth:

Rth2 = tRbd. (30)

Most metallic films on sapphire exhibit the approximate
empirical rule28 RbdT

3 ≈ 20 cm2.K4/W. Thus Rth2 ∼ 12
nK.cm3/W at 40 K (near Tc) and ∼800 nK.cm3/W at 10
K. (Ceramic on ceramic boundaries, such a Y1Ba2Cu3O7

on LaAlO3, seem to fair better in this respect.)
Finally as the heat pulse propagates through the sub-

strate, there is a third component to Rth, which for the
long rectangular strip geometry is given by25:

Rth3 =
2.26tτw

2(Dsτ)1/2[4(Dsτ)1/2 + w]cs
, (31)

where Ds = κs/cs is the diffusion constant, κs and cp
are the thermal conductivity and specific heat of the sub-
strate material, w is the width of the bridge, and τ is the

duration for which the power is applied. For sapphire,
cs ∼ 3.2 J/K.cm329 and κ ≈ 10 and 100 W/cm.K at 10
K and 40 K respectively30. Thus Ds = κs/cs ∼ 3 and
30 cm2/s at 10 and 40 K respectively. This gives a ther-
mal diffusion lengths

√
Dτ within the substrate of 6–17

µm for T=10–40 K, for τ = 100 ns. Since our bridge
widths (∼2–10 µm) are small or comparable to these dif-
fusion lengths, the denominator ∼ 8Dτcs ∝ κs is mainly
dependent on the conductivity of the substrate and is
relatively independent of its specific heat. From Eq. 31
the last component of the thermal resistance then has an
estimated magnitude of Rth3 ∼ 0.8–0.1 nK.cm3/W in the
T range 10–40 K respectively for a 3 µm wide bridge.

From the above estimated components, we can obtain
the total thermal resistance

Rth = Rth1 +Rth2 +Rth3 (32)

as Rth = 1.5 + 10 + 0.1 ≈ 12 nK.cm3/W near Tc and 0.8
µK.cm3/W at 10 K, where the dominating term comes
from the boundary resistance.

E. Adiabatic heating

The worst-case scenario for sample heating is when the
timescales and conditions are such that none of the gen-
erated heat escapes. In this case the energy density pτ
dumped by the pulse will go entirely into raising the in-
ternal energy U . The temperature rise can then be ex-
pressed in terms of the film’s specific heat as

pτ = δU =
∫ T ′

T0

c(T )dT ≈ c∆T, (33)

where the last approximation applies for small tempera-
ture shifts, c ≡ c(T0) is the specific heat at the nominal
bath temperature T0, and T ′ is the final raised tempera-
ture, i.e., ∆T = T ′−T0. The effective thermal resistance
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in this case is

RthA = τ/c(T0). (34)

Close to Tc, c(40K) ≈ 0.044 J/K.cm3 in MgB2
31. For

times between 100ns and 1µs after current turn on, the
corresponding adiabatic Rth then has values in the range
∼2–20 µK.cm3/W. Note that the RthA values are about
three orders of magnitude higher than when there is heat
conduction (Eq. 32) but place an absolute upper limit on
the actual Rth. Because RthA is directly proportional
to τ , the amount of heating can be made almost arbi-
trarily small by reducing the duration of the signal (for
very short durations there will be addional corrections
when the electrons can no longer equilibrate with the
phonons). The above estimates were for T∼Tc, at 5K
the corresponding RthA values will be one or two orders
of magnitude higher.

F. Heat generation at contacts

As seen above, pulsed measurements greatly reduce
the effective thermal resistance and accompanying tem-
perature rise in the sample. In addition they can essen-
tially eliminate problems associated with heat produced
at lead contacts. This is because the contacts are typi-
cally located several mm away from the active part of the
sample (the bridge) involved in the four-probe measure-
ment. This distance is typically large compared to the
thermal diffusion distance

√
Dτ . The specific heat at 10

K and 40 K is 1,400 and 50,000 J/K.m3 respectively31,32.
Together with the values of 10 and 40 W/m.K for ther-
mal conductivity26,27 gives diffusion constants of 0.007
and 0.0008 m2/s at the two temperatures. Thus for dis-
sipation durations 0.1–1 µs and temperatures 10–40 K,
we get diffusion distances in the 9–84 µm range, which
are about a hundred times shorter than the distance to
the bridge. So heat generated at the contacts does not
interfere with the measurement.

G. Pulse waveform distortion due to temperature
rise

The third component of the thermal resistance Rth3

arising from the flow of heat into the substrate is time
dependent (Eq. 31). As a result intense heating can
cause the resistance to rise with time and hence the volt-
age pulse becomes sloped21. Fig. 3 shows an example
of this situation, where the measurements were done on
Y1Ba2Cu3O7 films. Even in the case of a system with
a relatively T independent ρn such as the MgB2 films,
in the superconducting state the flux-flow resistivity is T
dependent, especially in the regime near Tc.

For very short pulses and/or low enough power densi-
ties, the temperature rise in the substrate ∆T = pRth3

becomes negligible and the main bottle neck for heat
conduction becomes the thermal boundary resistance. If

FIG. 4: IV curves for sample L at the lowest temperatures
with the exposed surface of the film in contact with different
thermal environments as indicated. The influence of thermal
environment on Joule heating is seen to be minimal as there is
no major systematic change in the threshold current at which
the jump in voltage occurs.

these conditions are satisfied the voltage pulse should ap-
pear flat. This was verified in all of our measurements
and data was only taken when the pulses were undis-
torted as in Fig. 2. Note that the power-dissipation den-
sities for the pulses in Fig. 3 are much higher than the
levels used in the present work on MgB2.

H. Influence of thermal environment

In measurements involving a continuous DC signal or
long time scales, substantial overall heating can be alle-
viated by immersing the sample directly in a liquid cryo-
gen. This is especially noticeable when the cryogen is in
a superfluid state33. In our measurements the timescales
are such that even the substrate does not experience a
sigificant rise in T . In this case we would expect that
additional heat removal from the exposed surface of the
film to a cryogen to not make a big difference. This is
indeed the case as can be seen in Fig. 4 where IV curves
measured in different thermal environments show a jump
to the normal state at a value of Id that is roughly inde-
pendent of the thermal environment.

I. Electron-phonon disequilibrium

Beside macroscopic heating of the sample, other exotic
situations can arise where the electronic temperature is
significantly raised with respect to the phonons, which
remain in equilibrium with the bath23,34–45. The char-
acteristic time for the relaxation of energy between the
electrons and phonons is typically under 10−8 s. This
effect happens mainly when there is vigorous vortex mo-
tion and is not a main concern in the present work.
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J. Temperature rise and thermal runaway

Except in the case when the sample has perfect elec-
trical conductivity, in the dissipative state the measure-
ment is necessarily accompanied by some rise in sample
temperature. This leads to the risk of thermal runway,
where a small temperature rise leads to increased dissi-
pation, leading to a further temperature rise and so on.
The sample can end up at a temperature much higher
than the bath temperature and possibly in the normal
state. If this scenario is fulfilled, the quantity actually
measured will be the conventional jc, demarkating the
onset of dissipation, rather than the true jd. The match
needed to light a thermal runaway is flux-flow dissipa-
tion whose power density is given by pf � j2ρnB/Hc2.
A small localized hot spot will not sustain a runaway
since the current can simply avoid the hot spot and flow
through more conductive regions. Also heat produced at
one point does not remain localized on the timescale of
the measurement but spreads uniformly across the width
of the film because the thermal diffusion length, calcu-
lated earlier, is larger than the bridge width. Thus the
the relevant parameter is the average dissipation across
the sample volume.

At 10 K, this pf is about 1.2 W/cm3 taking an aver-
age self field of 100 G (all measurements here were made
in zero applied magnetic field with the sample chamber
shielded by mu-metal in some cases). From the Rth calcu-
lated earlier, this results in ∆T ≈ 1.1 K, which increases
the sample resistance only marginally (ρn of MgB2 is
fairly flat; the rise occurs mainly because of a drop in
Hc2 with T ). This will lead to an insignificant rise in pf

even for a constant current. If the measurement is made
with a constant-voltage source, pf will actually drop with
R (since then pf ∝ V 2/R instead of pf ∝ I2R). Our ap-
paratus, when set to constant-voltage mode, has a source
impedence as low as 0.3 Ohms which is about an order of
magnitude below Rn. Thus the power dissipated doesn’t
rise rapidly with T . In the meanwhile the thermal prop-
erties that aid heat removal (conductivities and specific
heat) become rapidly more effective as T increases, work-
ing strongly to prevent a runaway. Thus it is possible to
make a quantitative evaluation of sample heating and the
risk of thermal runaway.

A more detailed discussion on the subject of hot
spots and thermal propagation in superconducting mi-
crobridges can be found in the review article by Gurevich
and Mints43 and references therein.

K. Depinning current versus depairing current

As long as gross sample heating or thermal runaway
can be eliminated as discussed above, there is no con-
fusion between the conventional (depinning) jc and jd.
When jd is exceeded, the resistance reaches the normal-
state value Rn. When jc is exceeded, the resistance ap-
proaches (if pinning is well overcome) the free-flux-flow

value Rf ∼ RnB/Hc2. The latter is lower than Rn by
three orders of magnitude. Hence the critical current
measured is not just the conventional depinning thresh-
old but a good estimate of jd.

L. Uniformity of current flow

A superconducting wire with dimensions small com-
pared to ξ and λ, automatically has a uniform distri-
bution of j and |∆| across the cross section. Close to
Tc, ξ and λ diverge, so this condition applies to the Tc2

shifts measured from resistive transitions at fixed cur-
rents (Eq. 22).

At lower temperatures and for sample cross sections
that are not small, the question of current-flow unifor-
mity needs to be further examined. In a type-I super-
conductor in zero applied field, the self flux is completely
expelled and the current flows without resistance along
the periphery of the cross section up to some thresh-
old value. Resistance first appears when the self field
at the surface exceeds Hc (Silsbee’s rule). Beyond this
the sample enters an intermediate state where normal
regions coexist with superconducting ones and current
flows through both so that the macroscopic resistance is
a fraction of the normal-state value. In this intermedi-
ate state, the current is distributed more homogeneously
over the sample volume.

In thin strips or bridges of type-II superconductors this
process goes a step further. First, instead of Hc you have
a much lower Hc1 that defines the threshold of flux entry
(possibly modified by surface barriers except for thin film
bridges). Likharev46 has shown that the minimum sam-
ple width for the nucleation of vortices is 4.4ξ(T ). Sec-
ond, because of the highly aspected geometry and con-
sequent large demagnetization, the effective threshold is
practically negligible. Thus there are always flux filled re-
gions within bridges wider than the Likharev threshold.
Also for the type-II case, vortices are present that nec-
essarily move since we are concerned with current den-
sities well beyond the depinning jc. Hence the current
flow will become homogeneous under these conditions.
In general, as the current grows beyond jc and the sys-
tem becomes highly resistive, the current flow becomes
macroscopically uniform as in a normal conductor. For a
steady macroscopic state, the time averaged circulation
of E vanishes so that its longitudinal value is constant
across the width of the sample. In this case j will also
be constant across the width, to the extent that the j(E)
funtion is independent of location. For a situation not
far from equilibrium, the principle of minimum entropy
production leads to the same conclusion.

This current-flow uniformity issue has been experi-
mentally investigated by us in our previous work22 on
Y1Ba2Cu3O7 bridges of different widths. Fig. 5 shows
ρ(j) curves on two Y1Ba2Cu3O7 bridges measured in the
highly non-linear mixed-state regime. Note that the re-
sistivity changes by almost two orders of magnitude and
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FIG. 5: Non-linear mixed-state response of two 90-nm thick
Y1Ba2Cu3O7 microbridges. Samples MY and LY are 8 µm
and 16 µm wide respectively. The lower two sets of sym-
bols, showing ρ and j calculated assuming uniform current
flow, are in excellent agreement. The open squares at the
top, showing ρ and j (for MY relative to LY) based on an
assumption of non-uniform current flow along edges, are in
conspicuous disagreement. The dashed line corresponds to
1% of the normal-state resistivity. The measurements were
made at T = 50 K and B = 13.8T (∼ 20% of Hc2); λ ∼ 200
nm.

extends below 1% of ρn. The values of ρ and j calculated
based on uniform current flow (i.e., dividing I by the
nominal cross section to obtain j, etc.) are in excellent
agreement. On the other hand if one assumes that the
current flows non-uniformly along the edges, the nominal
cross section will overestimate the actual area that con-
tains the current. In this case, the relative error between
samples MY and LY will be a factor of two in ρ and a
factor of half in j (the sample widths differ by a factor
of half). The edge flow assumption is checked by com-
paring the squares to the crosses. Clearly the assumption
fails. We consider this to be definitive proof that the cur-
rent does not just flow along the edges but occupies the
whole sample cross section uniformly once the transport
becomes dissipative. Other authors5,47 have also reached
the same conclusion that vortex motion homogenizes cur-
rent flow.

It will be seen in the results below that the values of
jd(0) in MgB2 obtained from resistive-transition shifts
near Tc agree with the values obtained at low temper-
atures from IV jumps. Also the values obtained for
samples with different cross sections are all in mutual
agreement. If the current flow did not fill the cross sec-
tion, the macroscopically calculated value of jd would be
higher for a narrower sample. All of these observations
confirm that current flow becomes homogeneous under
dissipative conditions.

FIG. 6: Resistive transitions of MgB2 bridges at different cur-
rents (values correspond to curves from left to right.). Panels
(a) and (b) show two windows of the same data. The inset
in (a) shows the sample geometry and configuration of leads.
Panels (b), (c), and (d) show the central main portions of the
transitions for three different sized samples. The rightmost
curves at I=1.4 µA were measured with a continuous DC cur-
rent; the rest used pulsed signals. The dashed lines represents
R = Rn/2 for each sample. Reprinted with permission from
M. N. Kunchur, S.-I. Lee, and W. N. Kang Phys Rev. B 68,
064516 (2003). (c) (2003) The American Physical Society.

IV. RESULTS AND ANALYSIS

A. Resistive transitions at fixed currents

Fig. 6(a) shows the resistive transitions at different
electric currents I for sample M. The inset shows the
sample geometry. The horizontal sections of the current
leads add a small (∼ 15 %) series resistance to the actual
resistance of the bridge. Because j in these wide regions
is negligible, this resistance freezes out at the nominal un-
shifted Tc, making the onset seem to not shift. Similarly,
the lower foot of the transition will have a flux-motion
contribution Rf ∼ RnB/Hc2 < 5% Rn from the self field.
The central two-thirds portion of the transitions (mag-
nified in panel (b)) circumvents these errors, displaying
relatively parallel shifts due to pair breaking.

Variations in film thickness cause the transitions to
broaden slightly with increasing j despite phase purity.
For a simple model with series thickness variations δt,
the functional shape of the current-dependent broadened
transition is given by R(j, T, δt) = Rn{log(j/4jd(0)) −
1.5 log(1−T/Tc)}/ log(1+δt/t), where δt=thickness vari-
ation. At the Rn/2 criterion (shown by the dashed line)
the actual Tc shifts correspond exactly to shifts for a
sample with the same mean thickness t but with δt = 0.

Panels (c) and (d) show similar sets of curves for two
more samples. It should be noted that in addition to
transition broadening due to thickness variations, the
R(T ) transition may have some intrinsic width as a func-
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tion of j. An analogous situation arises for R(T ) in a
magnetic field, where there is an intrinsic broadening as
B is increased48. Unfortunately there is no theoretical
work on the R(T ) transition shape at high j. Neverthe-
less, we expect the midpoint criterion for the shifted Tc to
provide a factor-of-two estimate of jd. Fig. 7(a) shows the

FIG. 7: Shifted transition temperatures at different currents.
The two panels compare the same Tc2(j) data versus I2/3 and

I2, showing adherance to the I2/3 law for pair breaking rather
than the I2 law for Joule heating. The linear fit (solid line)

to the I2/3 plot gives Id(0) = 257 mA (see Eq. 22).

midpoint Tc2’s and their corresponding currents (rang-
ing from 10−6 to 10−2 A) plotted as I2/3 (expected for
pair-breaking) and as I2 (expected for Joule heating).
The shifts are closely proportional to I2/3 rather than
to I2, showing that heating is not appreciable (the plots
for the other samples look similar). In fact from our
earlier calculation of the thermal resistance, we can es-
timate the expected temperature rise. For the average
j ≈ 0.4 MA/cm2, and transition-midpoint ρ ≈ 3µΩ-cm,
we get p ≈ 0.5 MW/cm3. This heats up the sample by
∆T = pRth ≈ 6 mK. This is much smaller than the size
of the symbols on the plot and two orders of magnitude
smaller than the observed shifts. Therefore heating is
definitely negligible for the data shown in Fig. 7.

The slope dI2/3/dTc(j) together with Eq. 22 gives a
zero-temperature depairing current value of 257 mA (if
the Tc criterion is taken at 30% and 70% of Rn, the corre-
sponding Id values are 196 mA and 299 mA respectively).
Dividing this by the cross-sectional area gives jd(0). For
samples S, M, N, and L the respective values of jd(0) are
2.2× 107, 2.1× 107, 2.0× 107, and 1.8× 107 A/cm2. The
four values are consistent within the uncertainties in the
sample dimensions, implying a cross-sectionally uniform
current density. As discussed earlier, this is especially
expected close to the Tc2(j) boundary where λ and ξ di-
verge and the superconductor becomes highly dissipative
due to flux motion and fluctuations.

FIG. 8: IV curves for sample N at fixed temperatures (listed
for curves going from right to left). Lines are drawn to guide
the eye. Curves at intermediate temperatures were omit-
ted for clarity. Beyond some threshold, the voltage jumps
abruptly to the normal state. The slanted portions have the
slope V/I = Rn and their intercepts are zero.

B. Current-voltage curves at fixed temperatures

Fig. 8 shows current-voltage (IV ) characteristics at
various fixed temperatures for sample N (results for sam-
ples S, M, and L are similar). As I is increased, V remains
close to zero until some threshold value. Above this it
switches abruptly to the Ohmic behaviour V = IRn.
This threshold is a lower bound for Id; however, as per
our earlier discussion regarding thermal runaway, the
temperature error is of the order of 1 K at low tem-
peratures and negligible at higher temperatures. So the
measured threshold can be associated with Id(T ) at the
nominal bath temperature.

For T � 35 K the transition is gradual whereas at the
lower temperatures it is rather abrupt49. This is partly
because of film thickness variation as discussed earlier
and partly because a type II superconducting phase tran-
sition changes from second order to first order at lower
temperatures in the presence of a current1.

The measurements on sample N were done with a sig-
nal source with a high source impedance thereby elim-
inating the “s” shape seen earlier in reference49, where
the external circuit had a source impedance comparable
to that of the sample.

C. Zero-temperature values of jd

From such IV characteristics measured at the lowest
temperature the current required to drive the sample nor-
mal provides a direct estimate of jd(T ≈ 0). These values
of jd(0) for the four samples are shown in Table 1 (top
row of numbers). These are seen to be consistent with
the values (bottom row of numbers in Table 1) obtained
from shifts in the resistive transitions near Tc (Fig. 7 and
Eq. 22). It may be reiterated that the measurement does
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Sample
Method: S M N L
IV at T � Tc 1.9 × 107 2.0 × 107 2.3 × 107 1.7 × 107

R(T) shift at T ∼ Tc 2.2 × 107 2.1 × 107 2.0 × 107 1.8 × 107

Theory:
GL 4 × 107

QPE shift 7 × 107

TABLE I: Zero-temperature values of jd in A/cm2

not reflect a depinning jc; without significant pairbreak-
ing or runaway heating, the motion of the minuscule self
flux (B �Hc2) will produce Rf � Rn. The observed
R ≈ Rn is reached only when the superconductivity is
completely destroyed and the system has become nor-
mal.

The average value for all samples by both methods is
jd(0) ≈ 2 ± 0.7 × 107 A/cm2.

Our experimental estimate of jd(0) can be compared
with theoretically calculated values from Eq. 21 and
Eq. 28. The Hc2 that enters these equations is the one
that reflects the clean-limit BCS coherence length in the
ab crystalline plane (H ‖ c axis). An actual measured
Hc2 reflects the reduced coherence length due to scatter-
ing (ξ ≈ √

ξ0l). Hence jd calculated from an empirically
measured Hc2 is going to be an overestimate. We take
Hc2(0) ≈ 3 T obtained from crystals by Sologubenko et
al.18 as an upper bound on the clean-limit Hc2. Because
of sample to sample variation and different amounts of
impurity scattering, the uncertainty and range in mea-
sured values of Hc2, span a factor of five50. For λ we take
the value of 150 nm found using an AC induction tech-
nique on the same type of film samples by Kim et al.20.
The experimental uncertainty and range in λ is about
±40%51, which is a tighter error bar than that of Hc2.
With these values of Hc2 and λ we obtain jd(0) based on
the GL calculation (Eq. 21) and the quasiparticle-energy
shift (Eq. 28). These calculated values are also shown
in Table 1 and are indeed higher than the measured jd
(by about a factor of 2–3), but are of the same order of
magnitude, which is about the best agreement that can
be expected given the uncertainties in the parameters.

Incidentally, from the measured value20 of 150 nm and
Eq. 4, the superfluid density turns out to be ns(0) ≈
1.3 × 1021 cm−3 and the measured18 Hc2(0) ≈ 3 T and
Eq. 20 give Hc ≈ 0.18 T.

D. Temperature dependence of Id

We now take the Id values determined by the IV jumps
of Fig. 8 and plot them versus temperature. Fig. 9 shows
such plots for two samples. The lines show the theo-
retical temperature dependencies expected from the GL
treatment (Eq. 16) and from QPE shifts (Eq. 27). For
Hc(T ) we take the generic empirical temperature depen-

FIG. 9: Pair-breaking currents from IV characteristics at
fixed temperatures (jumps in Fig. 8). The dashed line repre-
sents the GL Id(T ) function (Eq. 17) and the solid line repre-
sents the theoretical Id(T ) resulting from quasiparticle-energy
shift (Eq. 27). The end points Id(0) and Tc2(0) were fixed by
the data; no other adjustable parameters are involved in the
interpolation.

dence Hc(T ) ≈ Hc(0)[1 − (T/Tc)2], for ∆(T ) we take
the BCS function, and for λ(T ) we take the empirical
temperature dependence measured for MgB2 by Kim et
al. 3. The ends of the curves [0,Id(0)] and [Tc2(0),0] are
fixed. Other than that there are no adjustable parame-
ters. As can be seen the data follow the general trend of
the theoretical curves.

V. CONCLUSIONS

In conclusion, we have studied current induced pair-
breaking in magnesium diboride over the entire temper-
ature range for in-plane current transport. The measured
Id(T ) function is consistent with the expected theoreti-
cal temperature dependencies and conforms exactly to
the ∆Tc ∝ j2/3 behavior predicted near Tc. jd(0) ob-
tained from the value of current required to drive the

3 For our purpose and temperature range of interest (0 � T �
0.95Tc), Kim et al.’s empirical temperature dependence20 of λ
can be sufficiently well approximated by the simple function
λ(T ) ≈ λ(0)[1 − (T/Tc)2.2]−1/2 for T < 0.8Tc and λ(T ) ≈
2.74λ(0)[1 − (T/Tc)1.2]−1/2 for T > 0.8Tc. Similarly the BCS
temperature dependence of the gap can be approximated by
∆(T ) ≈ ∆(0)[1 − tan(0.67396 × (T/Tc)3.7)].
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sample normal at T → 0, agrees with the jd(0) deduced
from the ∆Tc ∝ j2/3 behavior close to Tc. The aver-
age value from our measurement is jd(0) ≈ 2± 0.7× 107

A/cm2, which is about a factor of three lower than the
value ∼ 6×107 A/cm2 calculated from published param-
eters, but the two are consistent within the uncertainities
of the various parameters.

From a technological standpoint, the depairing current
density of MgB2 is about an order of magnitude lower
than the high-Tc cuprates52. The good news is that flux
motion in films is so quenched53 that the depinning jc
at modest fields appears to be over 25% the magnitude
of jd54–56, whereas for the cuprates, jc and jd can be
separated by two or three orders of magnitude21.

The tremendous experimental difficulties against mea-
suring jd(0) until now, can be appreciated when one
sees that for Y1Ba2Cu3O7 (where jd(T ≈ Tc) was

measured52) the power density would be22,52 ρj2 ∼
10−4(108)2 ∼ 1012 W/cm3!—hopelessly beyond our
pulsed technique’s limit of ∼1010 W/cm3. Low-Tc ma-
terials like Nb and Pb also have prohibitive ρj2 values.
MgB2’s parameters (ρj2 ∼ 10−5(107)2 ∼ 109 W/cm3)
brought jd(0) within experimental reach.
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