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High flux velocities in a superconductor can distort the quasiparticle distribution func-
tion and elevate the electronic temperature. Close to Tc, a non-thermal distribution
function shrinks the vortex core producing the well-known Larkin-Ovchinnikov flux in-
stability. In the present work we consider the opposite limit of low temperatures, where
electron-electron scattering is more rapid than electron-phonon, resulting in an electronic
temperature rise with a thermal-like distribution function. This produces a different kind
of flux instability, due to a reduction in condensate and expansion of the vortex core.

Measurements in YBCO films confirm the distinct predictions ofthis mechanism.
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1. Introduction

A physical system in a stable steady state has a balance between forces such that

a small change in one force results in a restorative change in the others, leading to

a new stable state of the system. An object dragged through a viscous liquid by an

external driving force balanced by a drag force represents such a system. An increase

in the driving force causes an increase in velocity and the opposing drag, resulting in

negative feedback and restabilization. A peculiar situation can arise when the heat

generated by the dragged object reduces the viscous coefficient — as in the case of

honey — to such an extent that the drag force diminishes with increasing velocity.

The motion then becomes unstable and will run away to a higher velocity. Here we

have observed an analogous effect in the motion of quantized magnetic vortices in

a superconductor, where superheating of the electron gas weakens the condensate

and diminishes the viscous drag. This leads to a negative current-voltage slope and

an instability.
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2. Vortex Viscosity in the Linear Regime

When a type II superconductor is subjected to magnetic fields between the lower

critical value Hc1 and upper critical field Hc2, the system enters the mixed state

forming flux vortices containing a quantum of flux Φo = h/2e. The superconducting

order parameter ∆ is suppressed in the core of the vortex over the length scale of

the superconducting coherence length ξ and the core is surrounded by circulating

supercurrents. Here we have superconducting films in a perpendicular applied flux

density B, with a transport electric current density j in the plane of the film.

j exerts a Lorentz driving force FL = jΦo on the vortices and the consequent

vortex motion generates an electric field E = vB. The motion is opposed by a

viscous drag ηv, where η is the coefficient of viscosity and v the vortex velocity. In

steady state jΦo = ηv and the response is Ohmic. Larkin and Ovchinnikov (1986)

have shown that a dirty superconductor at low temperatures has a free-flux-flow

resistivity related to the normal-state value ρn by1

ρf/ρn ' 0.9B/Hc2(T ) . (1)

Approximately the same result, without the precise 0.9 prefactor, can be obtained

by considering the Ohmic dissipation in the core and temporal changes in the

order parameter leading to irreversible entropy transfer2; the result is also valid

for d-wave superconductors that are not superclean.3 Equation (1) is equivalent to

η ≈ Φ0Hc2/ρn. At low levels of j and E, in the assumed dirty limit l � ξEF /kTc

(l is the mean free path and EF is the Fermi energy), η is a constant that is

proportional to the order parameter ∆ and inversely proportional to the size ∼ ξ2

(where ξ is the coherence length) of the vortex.4 (The Hall effect and transverse

component of E are negligible for this discussion, as is vortex pinning because of

the large driving forces.5)

3. Non-linear Flux Flow

3.1. Earlier work

At high electric fields and dissipation levels sufficient to alter the electronic distri-

bution function and/or the electronic temperature, j(E) becomes non-linear and

can develop an unstable region (dj/dE < 0) above some critical vortex velocity

v∗. For the regime near Tc, such an instability has been predicted by Larkin and

Ovchinnikov (LO),6 and has been experimentally well established.7–10 At high

temperatures, the electron-phonon (ep) scattering time τep can be shorter than

the electron-electron (ee) scattering time τee, preventing internal equilibration of

the electronic system and producing a peculiar non-thermal distribution function.

Since the order parameter ∆ is especially sensitive to the distribution function when

close to Tc, even moderate values of E can sufficiently distort ∆ (via the Eliashberg

mechanism11) causing a shrinkage of the vortex core and a removal of quasipar-

ticles from its vicinity. This is the gist of the LO behavior.6,7 As LO themselves

emphasize, the effect is most favorable close to Tc for superconductors with a full
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gap and, as shown by Bezuglyj and Shklovskij,12 is dominant for B < BT (with

BT ∼ 0.1 T for our low-T regime). One of the predictions of the standard LO effect

is a v∗ that is B independent. This has been confirmed in Y1Ba2Cu3O7−δ in the

high-T range.9,10

3.2. Theoretical model for the hot-electron instability

Here we investigate the opposite regime of T � Tc and B > BT , where ∆ is not sen-

sitive to small changes in the distribution function.a Furthermore because τee < τep

as T → 0, the distribution function retains a near thermal character and the elec-

tronic system suffers mainly a temperature shift with respect to the lattice.6,12,14,15

Then instead of the standard LO picture described earlier, we consider a more

transparent scenario where the main effect of the dissipation is to raise the elec-

tronic temperature, create additional quasiparticles, and diminish ∆. The vortex

expands rather than shrinks, and the viscous drag is reduced because of a soften-

ing of gradients of the vortex profile rather than a removal of quasiparticles. This

sequence of events is almost opposite to the standard LO picture and represents a

new type of unstable regime prevalent at T � Tc. All experimental measurables

can be calculated without ambiguity, and the predicted field dependencies and full

j(E) curves fit the experimental results without any adjustable parameters.

Previously some deviations from LO behavior at intermediate temperatures —

such as a B-dependent v∗ — were treated through modifications to the LO effect,

such as an intervortex spacing lφ that exceeds the energy-relaxation length lε
16 or by

inclusion of thermal effects.12,14 Those treatments do not apply to the present T �
Tc regime where lε ∼

√

Dτep ∼ 100–1000 nm is larger than lφ = 1.075
√

Φo/B ∼
10–50 nm (D = 3 × 10−4 m2/s is the diffusion constant9).

Starting from the T ∼ 0 limit, the total input power jE travels from electrons

to lattice and from there to the bath, so that T0 < Tp < T ′, where T0 and Tp are

the bath and phonon temperatures, and T ′ is the raised non-equilibrium electronic

temperature. Macroscopic heating, represented by Tp − T0 = RthjE, is < 5% of

the total increase T ′- T0 for the worst case dissipation so that Tp ≈ T0 (Here

Rth ∼ 1 nK.cm3/W is the total thermal resistance between the film and the bath;

see experimental section. It will be seen later that the specific-heat integral heavily

weights the higher temperatures, so that Tp – T0 is quite negligible.). The energy

relaxation between electrons and lattice occurs by inelastic ep scattering, and is

characterized by an effective time τε ∼ 〈τep〉. The principal contributions to ρn

come from impurities and phonons. Since the phonon temperature remains near

the bath temperature, the value of ρn will not change as the non-equilibrium T ′

rises. Thus putting ρn(T0) and Hc2(T
′) (since Hc2 does depend on T ′) into previous

equations gives the j(E) response in terms of T ′:

j = vη(T ′)/Φ0 = EHc2(T
′)/ρn(T0)B. (2)

aAn abridged version of this derivation was given elsewhere.13



June 6, 2003 13:52 WSPC/147-MPLB 00557

552 M. N. Kunchur & J. M. Knight

3.3. Critical-parameter field dependencies

One now has the ingredients for calculating the critical field dependencies in a

few steps. The j(E) function of Eq. (2) is non-monotonic since E is multiplied by

Hc2(T
′) (or η(T ′)) which drops rapidly to zero as T ′→Tc with increasing dissipation.

The instability occurs at dj/dE = 0, which happens at a certain value T ′= T ∗

where Hc2(T
′) (or η(T ′)) drops sufficiently rapidly. T ′ depends explicitly only on

the power density jE = ηv2B/Φ0 and on quantities that depend on T ′ itself (τε,

specific heat, etc.). Hence at the instability, j∗E∗ = v∗2η(T ∗)B/Φ0 = const, which

gives the critical-parameter field dependencies:

v∗ ∝ 1/
√

B, E∗ ∝
√

B, j∗ ∝ 1/
√

B, and ρ∗ ∝ B (3)

using E∗= v∗B, j∗= v∗η(T ∗)/Φ0, and ρ∗= E∗/j∗. This gives v∗ ∝ 1/
√

B in a

natural way, consistent with our measurements in this regime and in contrast to

the B-independent v∗ of the pure LO effect near Tc.

3.4. Current-voltage characteristics

To derive the complete j(E) response and absolute values of critical parameters

we calculate T ′ and insert it into Eq. (2). We take Hc2(0) = 120 T17 with the

WHH function18 for interpolation between this Hc2(0) = 120 and Hc2(Tc) = 0

(There is some theoretical controversy regarding the exact form of Hc2(T ); however,

empirically, direct measurements17 of Hc2(T ), within their uncertainity, seem not

to depart drastically from the WHH function, and the exact functional shape does

not crucially affect our conclusions.). The dissipation raises the electronic energy

by jEτε, which is related to T ′ by

jEτε ≈
E2Hc2(T

′)τε

ρn(T0)B
≈

T ′

∫

Tp

c(T )dT ≈
T ′

∫

T0

c(T )dT (4)

where c(T ) is the electronic specific heat. Note that τε can be thought of as being de-

fined by the above equation. It is the ratio of the internal energy (R.H.S. of Eq. (4))

to jE, the net energy transfer rate.b To calculate c(T ), Y1Ba2Cu3O7−δ is modeled

as a layered d-wave superconductor: ∆~k
(T ) = ∆0(T )[k2

x − k2
y]/k2 ≈ ∆0(T ) cos(2θ),

taking the BCS temperature dependence for ∆0(T ) and ∆0(0) = 19 meV from

tunneling and infrared measurements.20 Then c(T ) = ∂{
∑

k Ekfk}/∂T , where

fk = [exp(Ek/kBT ) + 1]−1 is the Fermi-Dirac distribution, Ek =
√

ζ2

k + ∆2

k,

ζk = εk − µ, and µ = 0.2 eV is the chemical potential.21 With the replacement

bElsewhere19 we calculate the net rate of transfer of energy between the quasiparticles and phonons
in a superconductor. Near the instability, T ∗ varies over a small range for different starting T0

values (see Fig. 1) and the derived τε was found to have an insignificant dependence on this
narrow range of final heated electronic temperature, effectively making it a constant in the L.H.S.
of Eq. (4). At small values of T ′ the whole L.H.S. of Eq. (4) is negligible and then the flux flow is
in its usual free linear limit, making the (strong) variation of τε at low temperatures irrelevant.
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of
∑

k by
∫

dζN(0)
∫

dθ/2π (where N(0) is the normal density of states at µ) this

c(T ) is now inserted into Eq. (4), which is integrated numerically to obtain T ′ and

thence j(E) from Eq. (2).

The numerical results of the above calculation are shown in Fig. 1. The j(E)

curves of panel (a) have an infinite slope at the instability (j∗, E∗), indicated by

arrows, and then exhibit negative slope. This negative sloped portion is experimen-

tally forbidden in a current biased measurement and instead will be manifested as

a vertical jump in E. The electronic temperature T ′ rises from the bath value T0

to T ∗ at the instability. Panel (b) shows the computed T ∗, which is independent of

B as expected but has a slight dependence on the bath temperature T0.

Fig. 1. Numerical results obtained from solving Eq. (4), as described in the text. (a) Theoretical
j(E) curves, at T0= 0 K. The onset of negative slope, indicated by arrows, marks the instabilities.
(b) The critical temperature T ∗ for different initial temperatures T0; T ∗ is independent of B and
τε.

In order to conveniently scale the experimental curves, the exact numerical j(E)

function derived above — and plotted in Fig. 1 — can be cast into a mathematically

more manageable form by noting that the R.H.S. of Eq. (4) can be approximated

by jEτε ≈ ∆(T ′)nq(T
′) − ∆(Tp)nq(Tp) ≈ ∆(T ′)nq(T

′). ∆ and nq are connected

through the statistical equations of the previous paragraph. Numerically computing

the number of quasiparticles excited above the gap (taking the anisotropic d-wave

gap together with a BCS temperature dependence as discussed above) we obtain

the following d-wave generalization of the ∆−nq relationship: (∆/∆0)
2 = f(nq/n),

where n = 2.7 × 1021 cm−3 is the carrier concentration and f(x) ' 1 − 0.4386x −
1539x2 + 40381x3 − 345217x4 (despite the appearance of successively increasing

coefficients in f(x), the terms rapidly converge because x = nq/n ∼ kBT/EF ∼
0.01). Combining this with the earlier jEτε ≈ ∆(T ′)nq(T

′), η = jΦ0/v = jΦ0B/E,

η ≈ Hc2Φ0/ρn, and η ∝ ∆, we get a convenient closed form for the non-linear j(E)
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characteristic:

j ≈
(

Hc2(T0)

Bρn(T0)

)

E
√

f(x) (5)

with x = nq/n = 0.0245 × E2/E∗2, and E∗ =
√

0.0245ρn(T0)Bn∆0/τεHc2(T0) is

the value of E at the instability peak.

3.5. Critical resistivity

From the two left components of Eq. (4) one can write down an expression for the

critical resistivity ρ∗ = E∗/j∗ at the instability point:

ρ∗ = ρnB/Hc2(T
∗) ' γρf (6)

where T ∗ was obtained numerically from Eq. (4) and plotted in Fig. 1(b), and ρf is

the free-flux-flow resistivity in the linear limit (Eq. (1)). This result shows that ρ∗

like ρf should be proportional to B (as deduced earlier — see Eq. (3)) and that the

two are related by a factor γ, which turns out to be of order unity (since T ∗ does

not depend on B, neither does γ). Figure 2(a) shows the numerically computed γ

found from Eq. (6) and the computed T ∗ (Fig. 1(b)). Over the temperature range

of interest, γ ∼ 2 so that the critical resistivity is about twice the free-flux-flow

value.

Fig. 2. Numerically computed scale factor γ (= ρ∗/ρf ) that relates the critical resistivity (the
resistivity at the instability peak) to the free-flux-flow value (see Eq. (6)). γ is independent of B
but shows a slight variation with the bath (phonon) temperature.

4. Experimental Details

All measurements were made on c-axis oriented epitaxial films of Y1Ba2Cu3O7−δ

on (100) LaAlO3 substrates with Tc’s around 90 K and of thickness t ≈ 90 nm.

Electron-beam lithography was used to pattern bridges of widths w ≈ 2–20 µm and
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lengths l ≈ 30–200 µm. Altogether ten samples were studied at 12 temperatures

(1.6, 2.2, 6, 7, 8, 10, 20, 27, 35, 42, 50, 80 K) and at 13 flux densities (0.1, 0.2, 0.5,

1, 1.5, 2, 10, 11, 13, 13.5, 13.8, 14, 15.8 T). The electrical transport measurements

were made with a pulsed constant current source, preamplifier circuitry, and a

digital storage oscilloscope. The pulse rise times are about 100 ns with a duty

cycle of about 1 ppm, which for the narrowest bridges result in effective thermal

resistances of order 1 nK.cm3/W. Note that the j values in the experiment are an

order of magnitude lower than the depairing current density22 and the applied flux

densities exceed the self field of the current by at least two orders of magnitude.

Further details about the experimental techniques are discussed elsewhere.23,24

5. Results and Analysis
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Fig. 3. Experimental current-voltage characteristics. (a) Raw values of E versus j at T = 20 K
and applied B values of (from lowest to highest curve) 3, 5, 8, 11, 13.8, and 15.8 T. The last symbol
on each curve is right at the instability. The slightest further increase of j (entering the forbidden
negative-sloped portion of the theoretical curves of Fig. 1) causes E to make discontinous vertical
jumps (arrows). (b) The same data plotted as E+ = (E/B)×

√

f(0.0245E2/E∗2) (as per Eq. (5))
versus j − jc0, where the critical depinning current density jc0 is defined at E+ = 1 V/cm.T (the
scaling is not affected by the choice of criterion).

Figure 3(a) shows a typical set of experimental j(E) curves. The last stable

datapoint (j∗, E∗) of each curve is at the tail of each arrow. The slightest further

increase of j >j∗ causes a drastic vertical jump in E as shown by the arrows (the

voltage pulse jumps off the scale of the oscilloscope up to the compliance limit of the

current source). The jumps show only a small hysteresis < 3% of j∗. (As expected

for a current-biased measurement, the break occurs slightly before the slope has

become quite vertical.12) Figure 3(b) shows the same data plotted as the R.H.S. of

Eq. (5) vs j − jc0, the excess current density over the depinning value. The data
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Fig. 4. Variation of critical parameters with flux density. The measurements were made at T =
1.6 K. (a) The critical velocity shows a v∗ ∝ 1/

√
B trend (solid line is a 1/

√
B fit). (b) The critical

resistivity is proportional to the flux density (straight line is a guide to the eye).

scale well and tend toward homogeneous linearity. Note that the collapse implies

an excellent proportionality between ρ and B over the entire range.

Figure 4 shows experimentally measured B dependencies of v∗ and ρ∗ for

T0 = 1.6 K, demonstrating excellent agreement with Eq. (3) (the other dependencies

E∗ ∝
√

B and j∗ ∝ 1/
√

B follow from ρ∗ ∝ B and v∗ ∝ 1/
√

B). The v∗ ∝ 1/
√

B

dependence was found to be ubiquitous for all of our low-T measurements in ten

samples (spanning 1.6 K ≤ T ≤ 50 K and 0.5 T ≤ B ≤ 15.8 T) and has also

been seen by Xiao et al.10 at intermediate temperatures (at the lower end of their

T ∼ 60–90 K range of study). Note that the excellent linearity between between ρ∗

and B demonstrates the independence of η on B in this regime; then the resistivity

is simply proportional to the number of vortices and hence B.

Figure 5(a) shows ρn deduced from the measured critical resitivity and γ

(Fig. 2). Figure 5(b) shows ρn found by Nakagawa et al.17 by quenching the su-

perconductivity with high magnetic fields. The latter is subject to errors due to

magnetoresistance corrections and the former subject to inaccuracies in our insta-

bility model. However both show comparable trends in ρn(T ) allowing for some

magnetoresistance shifts. Together the two results show that the basic nature of

flux flow, at least in the YBCO cuprate superconductor, is relatively conventional

over the entire temperature range and that the normal-state has metallic residual

value in the T → 0 limit, as it is for ordinary low-Tc superconductors.

6. Conclusion

In conclusion, we investigated flux flow over the entire temperature range in the

YBCO cuprate superconductor and found that the basic nature of flux flow is rela-
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Fig. 5. The normal-state resistivity versus temperature (a) as deduced from the flux-flow insta-
bility of the present work and (b) from high-field transport measurements by Nakagawa et al. The
results are comparable, allowing for some magnetoresistance correction, and togther show that the
nature of flux flow is conventional over the entire temperature range and that the normal state
has a coventional metallic character.

tively conventional with a magnitude similar to Bardeen-Stephen. The normal-state

resistivity deduced from the flux flow is consistent with a direct transport measure-

ment at high fields larger than Hc2. When the flux motion is driven far beyond

free flux flow, we observe an instability under all conditions of fields, and temper-

atures from ∼ Tc/2 down to essentially T ≈ 0. The nature of this low-temperature

instability seems to be well described by a model where the electron gas is heated

above the phonon temperature leading to the generation of quasiparticles and loss

in viscosity as the vortex core expands and ∆ is reduced. This scenario is different

from the standard LO picture (dominant mainly near Tc) where the vortex shrinks

and quasiparticles leave its vicinity. Because the present effect prevails even at tem-

peratures well below Tc (where most superconductive devices operate) it becomes

an important consideration in the design of applications where the superconductor

operates in the dissipative regime, since the instability triggers an abrupt rise in

dissipation at j values much below the depairing current density.
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