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At high dissipation levels, vortex motion in a superconducting film has been observed to become unstable at
a certain critical vortex velocity v*. At substrate temperatures substantially below TC, the observed behavior
can be accounted for by a model in which the electrons reach an elevated temperature relative to the phonons
and the substrate. Here we examine the underlying assumptions concerning energy flow and relaxation times in
this model. A calculation of the rate of energy transfer from the electron gas to the lattice finds that at the
instability, the electronic temperature reaches a very high value close to the critical temperature. Our calculated
energy relaxation times are consistent with those deduced from the experiments. We also estimate the phonon
mean free path and assess its effect on the flow of energy in the film.
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I. INTRODUCTION

When a film of a type II superconductor is placed in a
magnetic field large enough to permit penetration of vortices,
a transport current in the film acts on the vortices through a
Lorentz force that is opposed by a pinning force and, even-
tually, by a drag force. When the Lorentz force exceeds the
pinning force, the vortices are set into motion and the drag
force comes into play. When the Lorentz force is substan-
tially larger than the pinning forces but the transport current
is still small compared to the depairing current, previous
experiments1–3 showed that the resulting dissipation is rea-
sonably well described by the Bardeen-Stephen �BS� model.4

In this region it is ohmic, but as the current is increased, it
becomes nonlinear and eventually reaches an instability
manifested by a discontinuous increase in voltage. At tem-
peratures not far below the critical temperature, the instabil-
ity has been studied in a classic paper5 by Larkin and
Ovchinnikov �LO�. They showed that the electron distribu-
tion departs from a thermal distribution at high vortex veloci-
ties, changing the superconducting order parameter and alter-
ing the drag force on the vortices. They predicted a
nonlinearity in the current-voltage characteristic and an in-
stability in the vortex motion when the vortices reach a criti-
cal velocity v*. The LO instability is due to a decrease in the
drag force with increasing vortex velocity, accompanied by a
decrease in vortex size. LO showed that the critical velocity
is independent of the magnetic field. Early experiments on
low-TC systems6 confirmed Larkin and Ovchinnikov’s results
and predictions. Subsequent experiments on Y1Ba2Cu3O7−�

�YBCO� by Doettinger, Huebener, Gerdemann, Kühle,
Anders, Träuble, and Villègier7 and by Xiao and Ziemann,8

also confirmed LO behavior.
However, experiments carried out at lower

temperatures9,10 on YBCO, showed a nonlinearity and insta-
bility with a very different dependence of v* on the magnetic
field B. Analysis9,10 showed that the new behavior could be
accounted for by a simple model in which the electron gas
has a thermal-like distribution function characterized by a
higher temperature than the lattice and bath. Larkin and
Ovchinnikov did, in fact, suggest this possibility in their
original paper11,12 without exploring its consequences. As the

electron temperature rises, the resulting increase in resistivity
causes a decrease in current above a certain electric field and
hence a nonmonotonic response. This model yields a critical
vortex velocity v* at instability that is proportional to 1/�B,
as seen in the low-T experiments. Some of the essential con-
sequences of such a hot-electron instability were calculated
in our earlier papers and shown to be consistent with experi-
mental observations.

In the present work some of the simplifying assumptions
and restrictions in the previous calculations have been re-
moved and more complete calculations have been carried
out.

�1� The rate ��
−1 of transfer of energy from the electron gas

to the lattice—which plays a crucial role in determining the
electron temperature—was taken as a constant in previous
discussions of the model. In this paper we show that it can be
expected to have a strong temperature dependence. This tem-
perature dependence of �� is now included in our numerical
calculations of the current-voltage curves. We find that the
general shape of the current-voltage relation is not very sen-
sitive to the temperature variation of �� because the electron
gas passes rapidly from the bath temperature to a tempera-
ture not far below TC before any significant nonlinearity is
manifested. This is a consequence of the very small low-
temperature specific heat of a superconducting electron gas.
However, the strong temperature variation of the relaxation
time gives a sensitive measure of the electron temperature.
Evaluation of �� from the data near the instability point in-
dicates an electron temperature much higher than the bath
temperature, supporting the heated electron picture of the
instability. The calculation of this electron-lattice energy re-
laxation time is presented in Sec. III below.

�2� In our previous work,9,10 we assumed the film thick-
ness to be negligible compared to the phonon mean free path,
so that the phonon temperature is uniform throughout the
film. In this work, we remove this assumption and take pho-
non lifetime effects into account. The phonons will not nec-
essarily be at the bath temperature, and will have a nonther-
mal distribution which varies with the position in the film.
Phonon lifetime effects can be taken into account following
the work by Bezuglij and Shklovsky,13 who solved the pho-
non kinetic equation for a thin film. The nonthermal phonon
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distribution found in this solution can be incorporated into
our calculation of the energy transfer rate, and provides a
correction to our earlier results. This result is derived in Sec.
IV below. We begin in Sec. II by giving a description of the
model presenting some new numerical results for the
current-voltage curves under various conditions and for the
critical parameters at the instability.

II. MODEL FOR INSTABILITY

The macroscopic fields in a type II superconductor carry-
ing a transport current are related to the velocity of the vor-
tices by the fundamental relation

v =
E

B
c , �1�

which follows from the law of induction. This equation can
be used to find the electric field once the vortex velocity is
determined by considering the fundamental dissipative pro-
cesses in the medium. Elastic forces can be shown to be
negligible. One of the dissipative processes is the scattering
of normal electrons in the vortex core and quasiparticles out-
side the core first treated by Bardeen and Stephen. They
found that the transport current density j is expressed in
terms of the upper critical field Hc2 and the normal resistivity
�n by

j =
Hc2

�n

E

B
. �2�

Later treatments5,14,15 take into account the relaxation of the
order parameter during a passage of the vortex first treated
by Tinkham.12 They give results which vary with circum-
stances, but agree with Eq. �2� to within a numerical factor of
order 1.

These energy dissipation mechanisms raise the energy of
the electrons, and this energy subsequently relaxes to the
lattice. The assumption of our model is that the electron-
electron scattering time is small enough compared to the
electron-phonon inelastic scattering time that the electron gas
remains in internal thermal equilibrium at a temperature
higher than the lattice temperature. The plausibility of the
assumption can be checked by estimating the crossover tem-
perature below which electron-electron scattering is domi-
nant. The standard estimates16 of the scattering rates �ee

−1

=��F /T2 and of �ep
−1=�3�D

2 /T3 then give a crossover tem-
perature of the order of 100 K for parameters appropriate to
YBCO.25 This temperature is indeed higher than the range of
interest in the experiments.

Changes in the energy density of the electron gas can be
described by a rate equation that includes the work done by
the electric field and the exchange of energy with the lattice.
If we assume that the exchange can be described approxi-
mately by an energy relaxation time ��, then the equation is

du

dt
= jE −

u�T�� − u�Tp�
���T�,Tp�

, �3�

where �� can depend on the phonon temperature Tp as well as
on the elevated electron temperature T�. We argue below that

the dependence of �� on Tp is weak enough to be ignored in
the relevant range of temperatures and the relevant energy
transfer rates between the lattice and the bath. The quasipar-
ticles transfer the energy they receive from the transport cur-
rent to the lattice at a rate much higher than it is radiated
back, and the energy then flows from the lattice to the bath.
Thus �� can be assumed to depend only on T�, and we can
write the steady-state equation

jE�� = �
Tp

T�
c�T�dT , �4�

where the energy difference in Eq. �3� has been expressed in
terms of the electronic specific heat per unit volume.

Equations �2�–�4� determine the relationship between the
electric field, the current density, and the temperature. The
temperature dependence of the specific heat and the upper
critical field are taken from standard BCS theory.17 In calcu-
lating the specific heat, the temperature dependence of the
gap was taken from BCS theory and its magnitude was mul-
tiplied by a factor to give the observed zero-temperature
gap18 and critical temperature. In the next section, we calcu-
late the energy relaxation time and its temperature depen-
dence.

Typical results of the model are presented in the following
figures. Figure 1 shows the calculated current-voltage curves
for different magnetic fields. The shape of the curves is in
general qualitative agreement with the experimental data
shown in Fig 2. The strength parameter b of the electron-
phonon coupling, defined in the next section, was adjusted to
obtain agreement with the values of E and j at the peak. We
comment on the choice of b in the next section.

The onset of the unstable region in the current-voltage
response does not require explicitly invoking the forces on
the vortices in treatment of the model. Rather, the instability
appears in the result as a region of negative differential con-
ductivity, where j decreases as a function of E. The region
begins at the value E* of the field that can be determined by
calculating dj /dE from Eq. �4�, setting the result equal to
zero, and solving for E
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FIG. 1. Effect of increasing flux density on the current density
vs electric field curve calculated in the model with variable ��.
Values of B beginning at the upper curve are 3, 5, 8, 11, and 14 T.
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E* =� C�nB

�Hc2��� + �Hc2�����
, �5�

where primes indicate differentiation with respect to
temperature.31 The experimentally well-verified �B depen-
dence of E* follows provided the temperature T* at the in-
stability is independent or weakly dependent on B so that the
temperature-dependent factors C, ��, and Hc2 in Eq. �5� re-
main independent of B. This result is a consequence of our
model, since we have explicitly excluded a field dependence
for these quantities and taken �n to be temperature and field
independent. Although Volovik19 has shown that the specific
heat has a B-dependence in type II materials above the lower
critical field, we have checked that his scaling prediction at
low temperatures gives only a weak dependence in the range
of fields B�Hc2 relevant to our experiment. Figure 3 shows
the change in the electron temperature as a function of the
applied electric field. The rise in temperature and corre-
sponding decrease in Hc2 result in decreasing differential
conductivity which leads to the instability. Figure 4 shows

the relatively small effect of increasing the phonon tempera-
ture, up to about 40 K, on the final temperature T* reached
by the electron gas.

III. ENERGY TRANSFER RATE

The total rate at which energy is radiated by the heated
quasiparticle gas to the lattice can be calculated by standard
methods.20,22 The two contributing processes, phonon emis-
sion and quasiparticle recombination with emission of a pho-
non, are illustrated schematically in Fig. 5. In the following
calculation, applicable to d-wave superconductors, we as-
sume the Fermi surface to be a cylinder of radius kF and
height 2� /c0, c0 being the c-axis lattice constant. The rate
for an emission of a phonon of momentum q=k−k� by a
quasiparticle of momentum k is

w =
V

�2��2	
� � d3k�d��Mq�2��� − �q���Ek − Ek� − 	�� .

�6�

This rate can be expressed in terms of the electron-phonon
spectral function 
2���F���, defined by


2���F��� =
V

�2��3	2 � dS�

vF�
�Mk−k��

2��� − �k−k�� , �7�

where dS� is an area element on the Fermi surface and vF� is
the Fermi velocity. If the quantity �Mk−k��

2���−�k−k�� is
replaced by its average over the Fermi surface

FIG. 2. Experimental curves of current density vs electric field
in YBCO for flux density �beginning with the upper curve� B=3, 5,
8, 11, 14, and 16 T.
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FIG. 3. Calculated electron temperature T� vs electric field E for
B=3, 8, and 14 T, with B increasing from left to right.
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FIG. 4. Electron temperature at the instability vs phonon
temperature

FIG. 5. Diagrams contributing to the energy transfer rate from
the quasiparticle gas to the lattice.
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1

S
� dS��Mk−k��

2��� − �k−k�� =
2�c0	2vF

VkF

2F��� , �8�

the transition rate becomes

w =
�

3c0	�
� �d2k�
2F�Ek − Ek��/	� , �9�

where d2k�=k�dk�d�� and �� is the azimuthal angle on the
Fermi cylinder. The total energy transfer rate was obtained
by integrating w over initial quasiparticle energies, and re-
duces to

Pe =
V

12�c0
2	�

� d2k� d2k�
2F�E − E��/	�E − E��ge�E,E�� .

�10�

The factor ge�E ,E�� contains the occupation factors and co-
herence factors

ge�E,E�� = f�E��1 − f�E����1 −
� cos 2� cos 2��

EE�
	

�11�

for the initial and final states. The second term in the coher-
ence factor integrates to zero because of the d-wave symme-
try of the order parameter. After transforming the momentum
integrals into integrals over the quasiparticle energy and per-
forming the azimuthal integrals, the energy transfer rate re-
duces to

Pe =
3V�

4�3	
� E dE D�E,� � E�dE�D�E�,�F��E − E��/	�

��E − E��ge�E,E�� . �12�

Here D�E ,� is the d-wave density of states

� d�

�E2 − 2cos22�
= 


4


K�E2

2	 , E � 

4

E
K�2

E2	 , E �  ,� �13�

where K denotes the elliptic function of the first kind. In this
way of calculating, there is some averaging over the Fermi
surface, but the characteristic d-wave density of states with
its logarithmic singularity at E= has been retained.

The spectral function 
2F��� is assumed to be of the form
b�2 appropriate for acoustic phonons. Although optical
phonons are present in high-temperature superconductors,
they are assumed to make only a negligible contribution to
the thermal conductivity responsible for carrying energy
from the heated electrons to the bath. The spectral function is
cut off at the Debye frequency �D. The constant b measures
the strength of the electron-phonon interaction. This is usu-
ally expressed through the electron-phonon coupling con-
stant �, defined as the integral of 2
2F��� /� over frequency,
which has a value of order unity in most superconductors.
Since we are only considering acoustic phonons, this pro-
vides an upper limit for b of about 10−3 meV−2. This is con-
sistent with the magnitude of the electron-phonon matrix

element quoted in Ref. 21, which gives b�6�10−4. It is
also in the same range as the values extracted from neutron
scattering data by Kaplan et al.20 for low-temperature super-
conductors. The deformation potential approximation as
cited in Ref. 22, on the other hand, gives a value of the order
of 3�10−7 meV−2. The choice that gives the best peak val-
ues for the peak current and for E* is 5.2�10−6 meV−2, more
in line with the latter value. The curves shown have taken
this best fit value for b.

Introducing the dimensionless variables x=E /T, y=E� /T,
and z= /T, the energy transfer rate takes the form

Pe = GVT5�e, �14�

with

G =
3�b

4�3	3 , �15�

and the dimensionless integral �e given by

�e = �
0

�

dx�
0

x D�x,z�D�y,z�xy�x − y�3

ex + ex−y + e−y + 1
. �16�

D�x ,y� is the dimensionless form of the density of states Eq.
�13�. The quasiparticle recombination process gives an ex-
pression of the same form with �e replaced by

�r = �
0

d

dx�
0

d−x

dy
D�x,z�D�y,z�xy�x + y�3

ex + ex+y + ey + 1
. �17�

The value of the specific heat constant � is taken from mea-
surements of Lee et al.23 as 0.0331 meV−1 nm−3, giving G
=1.257�106 meV−1 nm−3 s−1 when b is normalized to give
�=1.

Figure 6 shows the calculated energy transfer rates for
emission and recombination. Figure 7 shows the energy re-
laxation time �� found by equating the total transfer rate from
both processes to the last term in the rate equation �Eq. �3��.
We note the following properties of the energy transfer rate.

�1� The rate of energy transfer from the electrons to the
lattice at any given temperature24 is equal to the rate of trans-
fer from the lattice to the electrons at the same temperature.
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FIG. 6. Calculated energy transfer rate in meV/nm3 s of elec-
tron gas at temperature T to a zero-temperature lattice. The lower
curve represents the phonon emission process and the upper curve
represents the quasiparticle annihilation process.
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Indeed, the rate from phonon emission balances the rate from
absorption and the rate from quasiparticle recombination bal-
ances the rate from pair creation. These results can be dem-
onstrated in the deformation potential approximation, where
the matrix element for phonon emission and absorption de-
pends only on the phonon energy �. For example, the rates
for emission and absorption and for quasiparticle recombina-
tion and creation can be written

Pe = G� �n��� + 1�fe�E,E − ��N�E�N�� − E��3dE d� ,

Pa = G� n���fa�E,E + ��N�E�N�E + ���3dE d� ,

Pr = G� �n��� + 1�fr�E,� − E�N�E�N�� − E��3dE d� ,

Pc = G� n���fc�E,� − E�N�E�N�� − E��3dE d� ,

where n��� is the phonon occupation number at the given
temperature and N�E� is the quasiparticle density of states,
and G has the value 3Vb� /4�3	3. The equality of the rates is
evident upon substituting the explicit forms of the Fermi and
Bose distribution functions. In the same manner, the emis-
sion and absorption rates are identical after the same substi-
tutions and the change of variable E�=E+� in Pa.

�2� The differences between the emission and absorption
rates and between the pair recombination and creation rates
have only a weak dependence on the lattice temperature as
long as the electron temperature is near Tc and the lattice
temperature is low, say Tp�Tc /2. This conclusion is based
on values for Tc �7.75 meV� and  �19 meV� for YBCO.
Wellstood, Urbina, and Clarke22 assert that the difference
between the emission rate and the absorption rate for a nor-
mal metal is equal to the difference between the rate elec-
trons radiate to a zero-temperature lattice and rate phonons
radiate to a zero-temperature electron gas. This result is only
approximately valid in the gas of quasiparticles. The differ-
ences can be calculated from the previous pairs of equations

by taking n��� to be the phonon distribution function at Tp.
The difference between emission and absorption rates, for
example, is

Pe − Pa = G�
0

�

dE�
0

E−

d� fe�E,E − ��
e�/Tp − e�/T�

e�/Tp − 1
.

The dependence on Tp is contained in the last factor. For � of
the order of , T� of the order Tc, and T0 in the range zero to
Tc /2, this factor only varies from 1.0 to 0.915, showing
therefore a weak dependence of the difference on Tp. In an
earlier calculation assuming s-wave symmetry of the order
parameter, the differences were calculated explicitly for T
=0.8Tc and Tp ranging from 0.1Tc to 0.5Tc. The difference
varies less than 10% for emission and absorption and less
than 1% for the dominant creation and recombination. In
view of these results, we ignore the dependence on Tp and
calculate �� on the basis of the radiation rate to a zero-
temperature lattice. A very similar argument applies to the
difference between the pair recombination and pair creation
rates.

�3� Quasiparticle emission and absorbtion can only satisfy
the energy and momentum conservation laws if the the qua-
siparticle velocity vF�E /�� before emission or after absorb-
tion is greater than the sound velocity. This Čerenkov condi-
tion should be taken into account in the averaging near the
Fermi surface that enters into calculation of the electron-
phonon spectral function 
2F. In the integrals over quasipar-
ticle energy above, the lower limit should be the energy Ec at
which quasiparticles reach the sound velocity rather than 0.
The correction is of the order of the square of the ratio of the
sound velocity to the Fermi velocity. Since s /vF�1 for all
superconductors �s /vF�1.5�10−2 in YBCO�, the correction
can be safely ignored.

IV. PHONON LIFETIME EFFECTS

In the above discussion, we have not distinguished the
phonon temperature and the bath temperature. We now con-
sider corrections arising from a more general treatment of the
phonon distribution. The standard estimate of phonon mean
free path for normal metals 	vF /kT gives 17 nm when the
Fermi velocity is taken to be 2�105 m/s, which is shorter
than the 100 nm thickness of the experimental films. The
estimate of Kaplan, Chu, Langenberg, Chang, Jafarey, and
Scalapino20 of quasiparticle and phonon lifetimes in an
s-wave superconductor below the critical temperature gives a
frequency- and temperature-dependent numerical factor of
order unity multiplied by the characteristic time

�0
ph =

	N
2�av

4�2N�0�
�0� , �18�

where N is the ion number density, 
2�av is the average
electron-phonon coupling constant, N�0� is the single-spin
electronic density of states at the Fermi surface, and �0� is
the zero-temperature gap. Taking25 the values N=13 per unit
cell, 
2�av=5 meV, N�0� calculated from the free-electron
theory with vF having the value quoted above, and �0�
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FIG. 7. Energy relaxation time �� as a function of
temperature.

ENERGY RELAXATION AT A HOT-ELECTRON VORTEX¼ PHYSICAL REVIEW B 74, 064512 �2006�

064512-5



=19 meV, and converting the lifetime to a mean free path
using the longitudinal sound velocity 4.2�103 m/s yields a
path of the order of 103 nm, an order of magnitude larger
than the thickness of the experimental film.

These estimates indicate that we are dealing with a case in
which the phonon mean free path could be comparable to the
thickness of the sample. To deal with the general case, we
follow Bezuglij and Shklovskij,13 writing the kinetic equa-
tion for the phonon distribution function n�q ,z� as

sz
�n�q,z�

�z
= −

n�q,z� − n�T�
�ph

, �19�

where sz is the component of the sound velocity perpendicu-
lar to the plane of the film and n�T� is the thermal phonon
distribution at the electron temperature. If phonons are re-
flected at the free surface of the film and transmitted with
average coefficient 
 at the substrate interface, it is found
that the phonon distribution function is a linear combination
of two thermal distributions, one at the bath temperature and
one at the electron temperature. The coefficients in the linear
combination depend on the position within the film and on
the direction of propagation of the phonons:

n = A�z,��n�T� + B�z,��n�T0� . �20�

The integrand in the expression for the energy transfer rate
from quasiparticle gas to lattice contains the factor n+1,
while that for the reverse rate contains a factor n. If Eq. �20�
is substituted into these rates and an account is taken of the
condition for the equilibrium between the lattice and the gas,
the resulting rate contains a term with the factor 1−A and a
term with the factor Bn�T0�. For purposes of estimating the
correction for finite phonon lifetime, we neglect the term
proportional to n�T0� compared to the 1−A term on the
ground that the phonon number is small at a temperature T0
which is much smaller than the Debye temperature. An esti-
mate of the remaining term can be obtained by replacing 1
−A in the integral for the rate by its average value over the
thickness of the film and over the directions of propagation
of the phonon. The remaining integral is the one we evalu-
ated in the previous section.

The resulting explicit expression for A is

A = 1 −



1 − �1 − 
�e−2d/lz
�e−z/lz, qz � 0

e−�2d−z�/lz, qz � 0
� . �21�

Equation �20� with Eq. �21� reflects the gradual change of the
distribution from a nearly thermal distribution at the bath
temperature at the substrate interface z=0 to an electron tem-
perature thermal distribution over the distance of a phonon
mean free path. The transmission probability 
 can be deter-

mined, in principle,26 from the measured value of the thermal
resistance of the film-substrate interface, defined as the ratio
of T at the interface to the product of the power dissipated
per unit volume and the thickness of the film. The measured
value27,28 for YBCO is about 1�10−3 K cm2/W. The deter-
mination of 
 is affected by uncertainties due to the averag-
ing and due to the temperature variation of the thermal resis-
tance. A literal application of Eq. �14� of Ref. 26 produces
the average value 0.184 when d is of the order of or larger
than l. When d� l, Shklovskii shows that the effective 
 is
2d / l, which is 0.2 for the longest estimate of phonon mean
free path above. We, therefore, accept 0.2 as a reasonable
value. Sensitivity of the value of 1−A to d / l and 
 are
shown in Table I. The longest estimate of phonon mean free
path with the best estimate of the transmission coefficient
indicate that the energy transfer rate will be multiplied by a
factor of 0.325 due to phonon lifetime effects.

V. CONCLUSION

At temperatures well below TC, high electric fields and
current densities can produce an instability that can be ac-
counted for by a hot-electron gas model in which the elec-
tronic temperature is elevated due to dissipation. The calcu-
lations presented here provide a quantitative justification for
this scenario by showing that the temperature variation of the
energy transfer rate between the lattice and the electrons is
consistent with the position of the instability observed in
YBCO films. They show also that if the phonon mean free
path is not too small compared to the film thickness, the
necessary temperature difference between electrons and lat-
tices can be maintained.
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