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Abstract: The phenomenon of superconductivity occurs in the phase space of three principal
parameters: temperature T, magnetic field B, and current density j. The critical temperature Tc

is one of the first parameters that is measured and in a certain way defines the superconductor.
From the practical applications point of view, of equal importance is the upper critical magnetic field
Bc2 and conventional critical current density jc (above which the system begins to show resistance
without entering the normal state). However, a seldom-measured parameter, the depairing current
density jd, holds the same fundamental importance as Tc and Bc2, in that it defines a boundary
between the superconducting and normal states. A study of jd sheds unique light on other important
characteristics of the superconducting state such as the superfluid density and the nature of the
normal state below Tc, information that can play a key role in better understanding newly-discovered
superconducting materials. From a measurement perspective, the extremely high values of jd make
it difficult to measure, which is the reason why it is seldom measured. Here, we will review the
fundamentals of current-induced depairing and the fast-pulsed current technique that facilitates its
measurement and discuss the results of its application to the topological-insulator/chalcogenide
interfacial superconducting system.
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The phenomenon of superconductivity has a long and rich history: from the initial discovery
in 1911 of superconductivity in mercury at liquid-helium temperature [1] to the recent discovery
of room-temperature superconductivity in lanthanum superhydride [2,3]. Numerous parameters,
probed by a variety of techniques, are used to characterize the superconducting state. However, the
mixed-state upper critical field Bc2, reflective of the coherence length ξ, and the penetration depth
λL, reflective of the superfluid density ρs=1/λ2, are two crucial measurements that are amongst the
first to be performed. There are multiple techniques for determining such parameters, each of which
has its own advantages and limitations. Our group has developed some uncommon, and in some
cases unique, experimental techniques that investigate superconductors at ultra-short time scales,
and under unprecedented and extreme conditions of current density j, electric fields E, and power
density p = ρj2 (where ρ is the resistivity). These techniques have led to the discovery or confirmation
of several novel phenomena and regimes in superconductors and in addition provide an alternative
method to glean information on fundamental superconducting parameters, which in some cases
may be hard to obtain by other methods. These methods and approaches are highly relevant in the
search for new superconducting materials and in developing an understanding of their fundamental
properties. This article discusses the physical meaning of jd and its interrelationships with other
basic parameters of the superconducting state, as well as the technical challenges in measuring
this important critical parameter. We discuss our results from this approach in the study of the
topological-insulator/chalcogenide interfacial superconducting system.
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1. Introduction

Attractive interactions between charge carriers cause them to condense by pairs into a coherent
macroscopic quantum state below some transition temperature Tc. The formation of this state is
governed principally by a competition between four energies: condensation, magnetic-field expulsion,
thermal, and kinetic. The order parameter ∆, which describes the extent of condensation and the
strength of the superconducting state, is reduced as the temperature T, magnetic field B, and electric
current density j are increased. In type-II superconductors, there is partial flux entry at B values above
the lower critical magnetic field Bc1 and complete destruction of superconductivity above the upper
critical field Bc2 (type-I superconductors can be viewed as a special case where the thermodynamic
critical field Bc = Bc1 = Bc2). The boundary in the T-B-j phase space that separates the superconducting
and normal states is where ∆ vanishes, and the three parameters attain their critical values Tc2(B, j),
Bc2(T, j), and jd(T, B). jd sets the intrinsic upper limiting scale for supercurrent transport in any
superconductor, and for j > jd, the system attains its normal-state resistivity ρn. jd should be
distinguished from the conventional critical value jc (related to extrinsic characteristics such as the
depinning of vortices) above which there is partial resistivity ρ < ρn.

The resistivity ρ in the superconducting state is usually less than its normal-state value ρn.
The reason for the presence of resistance at all in the superconducting state is because of fluctuations,
percolation through junctions (in the case of granular superconductors), and the motion of magnetic
flux vortices. For singly-connected superconductors not very close to Tc, only the last mechanism
dominates as the cause of resistance. In the magnetic field region between Bc1 and Bc2, a type II
superconductor enters a “mixed state” with quantized magnetic flux vortices, each containing an
elementary quantum of flux Φ0 = h/2e. Under the Lorentz driving force of an applied current, j×Φ0,
vortices move transverse to j, leading to a flux-flow resistivity:

ρ f ∼ ρnB/Bc2 (1)

in the free-flux-flow (large driving force) limit.
Two length scales characterize the superconducting state [4]. One is the coherence length:

ξ = vFτ∆ ' h̄vF/π∆ (2)

which is the characteristic length scale for spatial modulations in ∆ (here, vF is the Fermi velocity
and τ∆ is the order-parameter relaxation time). The normal core of a flux vortex has an approximate
effective radius of ξ. The destruction of the superconducting state occurs when these normal cores
overlap, corresponding to the condition:

Bc2 =
Φ0

2πξ2 =
Φ0

2πξ1ξ2
(3)

where ξ is the coherence length perpendicular to B; the single ξ is replaced by the geometric mean√
ξ1ξ2 in cases where the plane perpendicular to B is characterized by two anisotropic values.

The other characteristic length scale in a superconductor is the magnetic-field penetration depth
λ, whose London value is given by:

λL =

√
m∗

µ0nse2 (4)

where m∗ is the effective electronic mass and ns is the density of superconducting electrons. The theory
behind this important quantity and its relationship to jd is described below. Figure 1 shows the profile
of the magnetic field as it gets screened from the interior of a superconductor.
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Figure 1. An externally-applied magnetic field B0 is screened from the interior of a superconductor
in the Meissner state over a characteristic length scale, which is the magnetic-field penetration depth
λ: B ∼ B0e−x/λ. The circulating screening current is of roughly the depairing magnitude jd, so that
λ ∝ 1/jd.

1.1. Superfluid Density

For clean metallic superconductors, ns → n as T → 0, where n is the concentration of carriers in
the normal state. Non-local effects and other corrections lead to deviations in λ from its London value.
Hence, the superfluid density ρs can be conveniently and more completely defined as:

ρs ≡ 1/λ2 (5)

which includes the effective mass and other corrections to the effective ns, rather than the
simpler definitions ρs = ns or ρs = ns/m∗ that are sometimes used in the literature. ρs,
a quantity of central importance in superconductivity, characterizes the phase stiffness of the
condensate [5] and its effectiveness at screening out magnetic fields and feeds into expressions for
the transition temperature (such as the Uemura relation Tc ∝ ρs(0) that applies to the underdoped
cuprate superconductors [6–8]).

Traditionally, many common methods for obtaining ρs do so by directly or indirectly
measuring λ through its effect on a superconducting sample’s magnetic-field profile and consequent
magnetic susceptibility. This category includes methods such as reflection of spin-polarized slow
neutrons [9], mutual inductance altered by an intervening superconducting film [10,11], changes in
the self-inductance of a coil that is part of an LC resonating circuit [12,13], muon-spin rotation [14],
magnetic force microscopy [15], microwave cavity resonance [16], and measurements of the lower
critical field. These measurements are understandably affected if the material’s internal magnetic
field is altered, for example by a large paramagnetic background as in the case of the Nd2−xCexCuO4

superconductor because of its Nd3+ magnetic moments.
Another approach to obtaining ρs is by measuring the inertia of the superfluid (kinetic inductance)

during its ballistic acceleration phase [17–20]. This method requires the sample to be patterned into
very high aspect ratio meanders for the highest accuracy.

A measurement of jd provides an alternative to the above approaches for obtaining ρs. It requires
a minimal amount of material (typically just a microbridge or nanobridge), does not require the
complicated meander patterning needed for a kinetic-inductance measurement, and is unaffected by
a material’s normal-state magnetism that affects inductive measurements of ρs as discussed above.
This immunity to material magnetism was used to good advantage for directly obtaining ρs in the
Nd2−xCexCuO4 superconductor for the first time [21]. Furthermore, unlike some of the methods for
measuring λ that do not provide an accurate absolute value but only provide the temperature variation
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λ(T)/λ(0), jd does provide the absolute value of λ and ρs and can hence provide information on the
total carrier concentration n.

1.2. Normal-State Resistivity

Another valuable byproduct of measuring jd is that it provides a direct measurement of the
normal state resistivity ρn for temperatures below Tc. One of the starting points in developing an
understanding of any newly-discovered superconductor is to understand the underlying normal state:
the type of carriers and their concentration, their band-related properties, and the relevant scattering
mechanisms and rates. At low applied B and j, ρ(T) drops precipitously below Tc, thereby obscuring
how ρn(T � Tc) would have behaved if the superconductivity had not set in. The most common
method for measuring ρn(T < Tc) utilizes high magnetic fields B > Bc2 to drive the system normal
below Tc; however, this measurement is subject to magnetoresistance (typically R(B) 6= const) and
may require prohibitively high magnetic fields (Bc2 > 100 T for some superconductors).

One alternative is to use the core of a magnetic flux vortex as a window to the normal state.
From Equation (1), a measurement of ρ f elucidates ρn [22]. However, this extraction of ρn requires
interpretation and modeling, since Equation (1) usually holds only approximately except for very high
driving forces, and the exact prefactor depends on the detailed regime of flux flow [23–25].

Current-induced depairing provides an especially clean method for destroying superconductivity
and accessing ρn(T � T0). Like the method of applying B > Bc2 to drive the system normal,
applying j > jd is also free of interpretation and modeling, unlike flux-flow dissipation measurements.
On the other hand, unlike the potential errors in the Bc2-based measurement due to normal-state
magnetoresistance, the jd method is immune to this issue because the normal-state electroresistance is
quite negligible (i.e., R(E) ' const) under the electric fields that arise at depairing conditions.

Thus, besides the investigation of interesting phenomena and regimes in superconductivity related
directly to current-induced depairing itself, the study of jd provides information on the important
parameters of the superconducting state such as ρs(T) and ρn(T).

2. Relationship between the Depairing Current and Other Parameters

In a microscopic theory such as the Bardeen–Cooper–Schrieffer (BCS) theory, experimental
quantities are calculated from microscopic parameters such as the strength of the effective attractive
interaction that leads to Cooper pair formation and the density of states at the Fermi level. Often, these
microscopic parameters are not sufficiently well known. In the London and Ginzburg–Landau (GL)
phenomenological theories, connections are made between the different observables from constraints
based on thermodynamic principles and electrodynamical properties of the superconducting state,
leading to an adequate estimation of the depairing current. These phenomenological formulations are
described next [4,26].

2.1. London Formulation

The London theory [4,27] of superconductivity provides a description of the observed
electrodynamical properties by supplementing the basic Maxwell equations by additional equations
that constrain the possible behavior to reflect the two hallmarks of the superconducting state: perfect
conductivity and the Meissner effect. Note that these properties hold only partially when vortices
are present.

An ordinary metal (normal conductor) requires a driving electric field E to maintain a constant
current against resistive losses. In the simple Drude picture, this produces Ohm’s law behavior, j = σE,
with a conductivity given by σ = ne2τ/m∗. A superconductor can carry a resistanceless current, and so,
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an electric field is not required for maintaining a persistent current. Instead, E in a perfectly-conducting
state causes a ballistic acceleration of charge so that:

E =

(
m∗

nse2

)
∂j
∂t

(6)

This is the first London equation, which reflects the dissipationless acceleration of the superfluid.
The second property that needs to be accounted for is the expulsion of magnetic flux by

a superconductor. The magnetic field is exponentially screened from the interior following a
spatial dependence:

∇2B = B/λ2
L (7)

Together with the Maxwell equation∇× B = µ0 j, this implies the following condition between B
and j:

B = −µ0λ2
L(∇× j) (8)

This is the second London equation, which describes the property of a superconductor to
exclude magnetic flux from its interior. Taken together with the Maxwell equation ∇× E = −∂B/∂t,
Equations (6) and (8) yield the expression for λL of Equation (4).

Besides the London equations themselves, a third ingredient needed for the estimation of jd in
this framework is the thermodynamic critical field Bc and its relationship to the Helmholtz free energy
density f . When flux is expelled, the free energy density is raised by the amount B2/2µ0. The critical
flux expulsion energy (for the ideal case of a type-I superconductor with a non-demagnetizing geometry
and dimensions large compared to the penetration depth) corresponds to the condition:

fc = fn − fs =
B2

c
2µ0

(9)

where the L.H.S. of the equation represents the condensation energy density, which is the difference
in free energy densities fn − fs between the normal and superconducting states. jd represents the

condition when the kinetic energy density equals the condensation energy density: 1
2 nsm∗v2

s =
m∗ j2d
2nse2 =

B2
c

2µ0
, where vs is the superfluid speed. Substituting for λL (Equation (4)) gives the London estimate for

the depairing current density:

jd ≤
Bc

µ0λL
(10)

The inequality reflects the fact that ns does not remain constant, but diminishes as j approaches jd.

2.2. Ginzburg–Landau Formulation

There are situations where a system’s quantum wavefunction cannot be solved for by usual
means because the Hamiltonian is unknown or not easily approximated. The GL formulation [28] is a
clever construction that allows useful information and conclusions to be extracted in such a situation
where one cannot solve the problem quantum mechanically. For describing macroscopic properties,
such as jd that we are about to calculate, the GL theory is in fact more amenable than the microscopic
theory [4,29].

The idea is to introduce a complex phenomenological order parameter (pseudo wavefunction)
ψ = |ψ|eiϕ to represent the superconducting state. |ψ(r)|2 is assumed to represent the order parameter
∆ introduced earlier, and to approximate the local density of paired superconducting charge carriers
(Cooper pairs), which in turn is half the density of superconducting electrons ns.

The free energy density fs of the superconducting state is then expressed as a reasonable function
of ψ(r) plus other energy terms. A “solution” to ψ(r) is now obtained by the minimization of free
energy rather than through quantum mechanics. The unknown parameters of the theory are then
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solved in terms of measurable physical quantities, thereby providing constraints between the different
quantities of the superconducting state.

Close to the phase boundary, |ψ|2 is small, and so, fs can be expanded keeping the lowest two
orders of |ψ|2. First, let us consider the simplest situation where there are no currents, gradients in |ψ|,
or magnetic fields present. Then, we have:

fs = fn + α|ψ|2 + β

2
|ψ|4, (11)

where α and β are temperature-dependent coefficients whose values are to be determined in terms of
measurable parameters. The coefficients can be determined as follows. First of all, for the solution of
|ψ|2 to be finite at the minimum free energy, β must be positive. Second, for the solution of |ψ|2 to be
non-zero, α must be negative. Since |ψ|2 vanishes above Tc, α must change its sign upon crossing Tc.
The minimum in fs occurs at:

|ψ|2 = −α/β. (12)

Substituting this back in Equation (11) and using the definition of Bc (Equation (9)), Equation (12)
can be written as:

fc =
B2

c
2µ0

=
α2

2β
(13)

giving one of the connections between α and β and a measurable quantity (Bc). A second connection
can be obtained by noting that ns in Equation (4) can be replaced by 2|ψ|2, taking its equilibrium value
from Equation (12):

λ2 =
m∗

2µ0|ψ|2e2 =
−β

α

(
m∗

2µ0e2

)
(14)

Solving Equations (13) and (14) simultaneously gives the GL coefficients:

α = −2e2B2
c λ2

m∗
and β =

4µ0e4B2
c λ4

m∗2
(15)

Note that e and m∗ refer to single-carrier values and not pair values.
To calculate jd, we include the effect of a current in Equation (11) by adding a kinetic energy term

1
2 nsm∗v2

s = |ψ|2m∗v2
s to it:

fs = fn + α|ψ|2 + β

2
|ψ|4 + |ψ|2m∗v2

s . (16)

For zero j and vs, we saw earlier (Equation (12)) that the equilibrium value of |ψ|2 that minimizes
the free energy is |ψj=0|2 = −α/β. For a finite j and vs, minimization of Equation (16) gives the value
of |ψ|2 when it is suppressed by a current:

|ψj 6=0|2 =
−α

β

(
1− m∗v2

s
|α|

)
= |ψj=0|2

(
1− m∗v2

s
|α|

)
(17)

The corresponding supercurrent density is then:

j = 2e|ψj 6=0|2vs =
−2eα

β

(
1− m∗v2

s
|α|

)
vs (18)

The maximum possible value of this expression can now be identified with jd:

jd(T) =
−4eα

3β

(
|α|

3m∗

)1/2

=

(
2
3

)3/2 Bc(T)
µ0λ(T)

(19)

where the GL-theory parameters were replaced by their expressions in terms of the physical
measurables Bc and λ through Equation (15). As anticipated at the end of Equation (10) for the
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London derivation for jd, that simpler estimate is indeed larger than this more rigorous GL derivation
by the factor (3/2)3/2 = 1.84.

The approximate temperature dependence of jd can be obtained by inserting the generic empirical
temperature dependencies Bc(T) ≈ Bc(0)[1− (T/Tc)2] and λ(T) ≈ λ(0)/

√
[1− (T/Tc)4], giving:

jd(T) ≈ jd(0)[1− (T/Tc)
2]

3
2 [1 + (T/Tc)

2]
1
2 (20)

which close to Tc reduces to:
jd(T) ≈

√
2jd(0)[1− (T/Tc)

2]
3
2 . (21)

where jd(0) is given by Equation (19) by setting T = 0 (for high scattering “dirty” superconductors,
the
√

2 prefactor can be smaller or absent [29,30]).
Since Bc is not an easy quantity to measure directly, the relation:

Bc =

√
Φ0Bc2

4πλ2 (22)

can be used along with Equation (19) to write the expression for jd(0):

jd(0) =

√
2Φ0Bc2(0)

27πµ2
0λ4(0)

(23)

that has the more easily measurable Bc2. Since both Bc2 and jd can be obtained from transport
measurements, this becomes a convenient way to obtain λ and, hence, ρs.

2.3. Microscopic Formulations and Generalizations

Various authors have calculated jd(T) from a microscopic basis [29,31,32]. For arbitrary
temperatures and mean free paths, one must use the Gorkov equations as the starting point.
Kupriyanov and Lukichev [33] have derived jd(T) from the Eilenberger equations, which are a
simplified version of the Gorkov equations. This derivation is beyond the scope of the present
review, but a nice shortened version can be found in [30]. The microscopic calculation confirms
the overall temperature dependence predicted by GL, and the two normalized curves differ only
slightly from each other (e.g., see Figure 4 of [30]). Thus, the GL theory can be applied over the entire
temperature range down to T � Tc. The previous equations relating jd to Bc and λ are expected to
hold in the case of multiple bands and other gap symmetries, as long as one uses the actual empirical
temperature dependencies of Bc and λ, which account for modifications in these unconventional cases.
This was experimentally demonstrated in the case of MgB2 [26], which was recognized as a multi-gap
superconductor tuned by strain and doping in the early part of this century; in fact, MgB2 showed
superconductivity near a Lifshitz transition as in iron-based superconductors [34–36].

3. Pulsed Measurement Technique

Depairing current densities in superconductors is extremely high: on the order of jd(T = 0) =
1011–1013 A/m2. If the cross-section of the sample is even as narrow as just 1 mm2, the current required
would reach a value of I = jA ∼ 106 A. Such a magnitude of current would be exceedingly difficult to
produce and control. There are three steps to overcoming this dilemma: (1) Fabricate samples with very
narrow cross-sectional areas. This can be achieved by growing nanowires and nanorods or by depositing
very thin films and using lithography to pattern narrow bridges (alternatively, the films can be deposited
onto nanowires or carbon nanotubes). (2) The next step is by pulsing the current at very low duty cycles so
that large values of I can be handled while reducing the time-averaged current and time-averaged power
dissipation to manageable levels. (3) The last step is limiting the measurement of jd to the regime close to
Tc. From Equation (21), it would seem that jd can be made arbitrarily small by making T very close to Tc;
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however, the T− Tc distance needs to be large compared to the transition width for the measurement
to be meaningful. Even for this near-Tc measurement of jd, the current usually will have to be pulsed to
avoid significant sample heating. Furthermore, the near-Tc measurement will only measure ρs in that
region, and its zero-T value will have to be extrapolated using theory. While this is better than nothing,
it will not shed light on any abnormal temperature dependence of ρs over the entire range, which could
be of special interest if the superconductor has some exotic behavior.

Thus, the experimental ingredients needed to conduct a jd measurement are: a superconducting
sample with a very narrow cross-section; a means to control the temperature, i.e., a cryostat; and a
method for sourcing pulsed signals (current or voltage) and detecting the consequent complementary
signal (voltage or current). There are numerous methods for sample fabrication, which vary widely
with the different superconducting materials. Some deposition systems for preparing superconducting
films can be bought off the shelf. Cryostats also represent standard equipment that can be bought off
the shelf. The principal distinguishing the experimental capabilities of our work center on the pulsed
electrical measurements. Therefore, the rest of the experimental section will be devoted to describing
this unique measurement setup.

Figure 2 shows the overall configuration and functional schematic. The pulsed current/voltage
source puts out a time-varying current and voltage. This signal flows through a standard impedance,
usually a resistor Rstd (although an inductor is preferable in some situations) and the superconducting
sample of resistance R that are in series. The initial signal can be taken directly from the output of a
standard pulse generator (one of the models used was a Wavetek Model 801). These signal generators
will typically have an output impedance of Zout = 50 Ω. If a lower Zout is desirable (to allow for
constant voltage control), the signal generator’s output can be passed through any standard buffer
amplifier (e.g., a transistor-emitter-follower-based circuit, a power-operational-amplifier-based circuit,
or an off-the-shelf audio amplifier). If a higher voltage than the signal generator’s output is desirable,
its output can be passed through any standard voltage amplifier (fast high quality audio amplifiers can
serve this purpose as well). Combining a higher voltage signal with a large series resistor (which can
be the Rstd itself or an additional series resistor) can provide a relatively constant current. In general,
the measurement will be in current-controlled or voltage-controlled mode depending on whether
the combination of the final Zout (after the amplifier if any) plus Rstd is greater than or less than R.
If the current needs to be held constant to a high accuracy (for example, if a series of R vs. T resistive
transition curves needs to be traced out at various constant currents, as will be seen later), then it is
better to follow the pulse generator with a transconductance amplifier, which converts the generator’s
voltage pulse into a constant current pulse. The transconductance amplifier is able to hold the current
constant by electronic circuity instead of needing an enormous series resistance. While conducting
a pulsed current-voltage (IV) curve, which is usually done manually, it is preferable to have the
voltage-controlled mode. The reason for this is that as the current and voltage are pushed higher,
the sample’s resistance will increase, and at some point, the sample will be driven to normal as jd
is exceeded. In constant-current mode, the power dissipation P = I2R rises as R rises, causing an
increase in heating and a further rise in R. This can lead to a run-away condition, which can destroy the
sample. On the other hand, the constant-voltage mode is self-stabilizing since in this case, P = V2/R
decreases as R rises, thus reducing heating and controlling the situation.

Once the current pulse flows through the sample and Rstd, the corresponding time-varying
voltages, V(t) and Vstd(t), will be developed across them respectively. These must be observed and
quantified using an oscilloscope. A digital storage oscilloscope (DSO) allows multiple pulses to
be averaged. Since the signal is exactly repetitive, because the DSO is triggered off of the pulse
generator’s sync signal, the averaging effectively suppresses random uncorrelated noise. As long as
the sample condition (T, B, etc.) is stable, a very high number of averages can be taken to improve
the signal-to-noise ratio (SNR) vastly. Coaxial cables with 50-Ohm characteristic impedance are used
between all connection points, including the wiring within the cryostat. Where possible, the originating
and/or terminating points at the ends of the cables need to have matching 50-Ohm values to avoid



Condens. Matter 2019, 4, 54 9 of 16

reflections. Multiple ground connections to the circuit must be avoided to prevent ground loops.
This means the two channels of the DSO cannot be simultaneously connected to both the sample
and Rstd; either a differential instrumentation preamplifier (Princeton Applied Research and Stanford
Research Systems are two brands that make instrumentation amplifiers) must be used between the
DSO channels and the sample and Rstd, or only one of the two must be measured at a time.

Figure 2. The overall configuration and functional schematic of the pulsed-signal measurement system.
The differential preamplifiers (diff preamps) convert the time-varying potential differences across
standard impedance (Zstd) and the sample, Vstd(t) and V(t) respectively, into ground referenced
single-ended signals that can be fed to the inputs of a digital storage oscilloscope.

Figure 3 shows the pair of time-varying current I(t) = Vstd(t)/Rstd and sample-voltage V(t)
signals that results. The topmost trace is the scaled calculated resistance 50R(t) = 50V(t)/I(t).
Note that the pulses reach constant plateaus after their initial transients. R, V, and I are defined
by taking the plateau values of the individual quantities. The thermal rise in a sample because
of Joule heating involves several processes: thermal diffusion occurs within the sample essentially
instantaneously; on the time scale of nanoseconds, phonons transfer heat across the interface between
the film and substrate; heat then diffuses within the substrate in a matter of microseconds and finally
into the heat sink in milliseconds. For those processes that have time scales comparable to or longer than
the pulse duration, there will be a visible rise in V(t), causing the pulse to be distorted. Thus, as long
as the V(t) pulse is flat, slow causes of heating that influence the V(t) shape can be assumed to be
negligible. The work in [37] discusses a method to evaluate a sample’s thermal resistance for pulsed
signals quantitatively.

Figure 3. The measured oscilloscope traces of the sample voltage V(t), current I(t)=Vstd(t)/Rstd, and scaled
calculated resistance 50R(t) = 50V(t)/I(t) for an MgB2 bridge at 42 K (normal state just above Tc).
The resistance rises from 10–90% of its final value in about 50 ns (adapted from Reference [26]).

Figure 4 shows an example [26] of a set of IV curves at various fixed temperatures (in zero
magnetic field), where each data point represents a pulsed measurement (plateau values) as described



Condens. Matter 2019, 4, 54 10 of 16

above. As the temperature is increased, jd is reduced, and hence, the “jump” occurs at a lower value of
I. Notice that the resistance (the V/I slope) jumps from zero (dissipationless superconducting state)
to a constant finite value (normal-state) as the current crosses its depairing value. This is one direct
way of obtaining ρn below Tc. In this particular material, high impurity scattering dominates over
electron-phonon scattering at all temperatures, leading to a relatively flat ρ(T). A more interesting
application of this technique for elucidating a variable ρ(T) is described in a later section.

Figure 4. Current-voltage curves in a MgB2 bridge at various fixed temperatures. As the temperature is
increased, jd is reduced, and hence, the “jump” occurs at a lower value of I. The sloped portions above
each jump represent the normal-state resistance Rn = ∆V/∆I (adapted from from Reference [26]).

Figure 5a represents a set of pulsed constant-current R(T) curves in zero magnetic field [38].
As the current is increased, the transition is progressively pushed down in temperature. Figure 5b plots
these midpoint transition temperatures (Tc2) versus I, and they are seen to follow a I2/3 law as per
Equation (21). From this measured slope and Equation (21), one can estimate jd(0) without requiring
the application of this enormous value of current. This is especially useful for systems (e.g., cuprate
high-temperature superconductors) that have a very high jd(0) value.

Figure 5. (a) Resistive transitions in a Sr1−xLaxCuO2 superconducting film bridge in zero magnetic
field at various transport current values (right to left): 12.9, 132, 258, 426, 533, 721, and 1020 µA.
The lowest current is continuous DC; the remaining currents are pulsed. The inset shows a magnified
view of the midpoint region. (b) Left axis (circle symbols): two-thirds power of the depairing current
versus the midpoint transition temperature corresponding to the depairing law. Right axis (plus
symbols): square of the depairing current versus the midpoint transition temperature corresponding to
Joule heating (adapted from Reference [38]).
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Figure 6 shows the companion very low DC-current R(T) curves at various constant B values.
Here, the shift occurs because of the Bc2(T) boundary; the current level is small enough for its depairing
to be negligible. Unlike jd(T), Bc2(T) has a linear dependence near Tc , and that slope can be related to
Bc2(0) through the WHH (Werthamer, Helfand, and Hohenberg) theory [39] and its variations [40] by
relationships such as Bc2(0) ' 0.7dBc2/dT.

Figure 6. (a) Resistive transitions of a Sr1−xLaxCuO2 superconducting film bridge at a constant current
of I = 13 µA in various perpendicular magnetic field values as indicated in the key. (b) Upper critical
magnetic field versus the midpoint transition temperature, extracted from the curves in (a) (adapted
from Reference [38]).

The measurements represented by Figures 5 and 6 together with Equation (23) are the key to
obtaining ρs through relatively straightforward transport measurements. We now look at one recent
example of a current-induced depairing study of an exotic superconducting system.

4. Investigations in a Topological Insulator/Chalcogenide Interfacial Superconductor

4.1. Background

The interface between the Bi2Te3 topological insulator and the FeTe chalcogenide provides a
fascinating 2D superconducting system, in which neither Bi2Te3, nor FeTe are superconducting by
themselves [41]. While the exact origin of the superconductivity is not known, it has been suggested that
the robust topological surfaces states may be doping the FeTe and suppressing the antiferromagnetism
in a thin region close to the interface, thus inducing the observed 2D superconductivity. These surface
states represent a conducting system with very high normal conductivity because of protection against
time-reversal-invariant scattering mechanisms. Therefore, it is of great interest to understand the nature
and origin of the charge carriers that underlie this interfacial superconductivity, and in particular, to see if
the topologically-protected surface states might be a source of the normal carriers. The relevance of this
question is broader than the specific system studied here, since it has been recently proposed that interfacial
superconductivity may even play a role in cuprates: for example, in the interface located between charge
density wave nanoscale puddles [42] and between oxygen-rich grains where the interface is made of
a filamentary network with hyperbolic geometry [43,44]. We describe below how the current-induced
depairing approach was used to answer these questions to elucidate the nature of the normal state in the
Bi2Te3/FeTe system.
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4.2. Samples and Experimental Information

The Bi2Te3/FeTe samples consisted of a ZnSe buffer layer (50 nm) deposited on a GaAs
(001) semi-insulating substrate, followed by a deposition of 220 nm thick FeTe, which was then
capped with a 20 nm-thick Bi2Te3 layer. Upper-critical-field measurements [41] and vortex-explosion
measurements [45] showed that the superconductivity occurred within an interfacial layer of thickness
d = 7 nm, which was much thinner than both the FeTe and Bi2Te3 layers. Projection photolithography
followed by argon-ion milling was used to pattern narrow microbridges optimized for the high
current-density pulsed four-probe measurements. Two bridges were studied: Sample A with lateral
dimensions of width w = 11.5 µm and length l = 285 µm and Sample B with w = 12 µm and
l = 285 µm. The onset Tc (defined as the intersection of the extrapolation of the normal-state portion
and the extrapolation of the steep transition portion of the R(T) curve) for both bridges, was 11.7 K.
Details about sample preparation are provided in [41]. All measurements were made in zero applied
magnetic field. While the very low reference curves at I ≤ 60 µA were measured using continuous
DC signals, the main electrical transport measurements were made with pulsed signals. Contact
resistances (<1 Ω) were much lower than the normal resistance Rn of the bridge, and heat generated at
contacts did not reach the bridge within the time duration t of each pulse, since the thermal diffusion
distance (

√
Dt ∼ 10 µm) was much shorter than the contact-to-bridge distance (>1 mm); here, D is the

diffusion constant.

4.3. Results and Discussion

The normal-state resistivity ρn(T) and depairing current density jd(T) in the Bi2Te3/FeTe samples
were extracted over the entire temperature range [46], by driving the system normal with high pulsed
currents using the methods described earlier and illustrated in Figures 4 and 5. Figure 7 shows the
raw depairing current results. The dashed horizontal lines in Panels (a) and (b) provide the values
Id(T → 0) ≥ 0.131 A and 0.136 A for Samples A and B, respectively.

In order to obtain more accurate intrinsic jd and ρn of the 7 nm-thick superconducting interfacial
layer itself, we needed to subtract the small parallel current through the normally conductive
underlying FeTe layer. For this purpose, a separate measurement of pure FeTe deposited on
ZnSe/GaAs, without the Bi2Te3 top layer, was conducted [46]. With this subtraction, the previous raw
Id(T → 0) values gave a corrected jd(T = 0) of 1.5× 108 A/cm2 for both samples (which is a typical
value: jd ranges 107–109 A/cm2 for most superconductors), and the correction gave the intrinsic ρn(T)
for the two samples, as shown in Figure 8. This absolute value of ρn(T→0)∼200 nΩ cm represents an
extraordinarily conductive normal state for a superconducting system, as most superconductors are
poor conductors in the normal state. This information will be analyzed below within the framework of
an anisotropic Ginzburg–Landau (GL) approach [46], to obtain information on the superfluid density,
carrier concentration, and scattering rate, as well as their implications for the nature of the normal-state.

From the previously-published measurements of He et al. [41], we have the following
orientation-dependent values of Bc2: perpendicular-to-interface B⊥c2(0) ≈ 17 T and parallel-to-interface

B‖c2(0) ≈ 40 T. The corresponding coherence lengths from Equation (3) are: in-plane ξ‖(0) ≈ 4.4 nm and
perpendicular ξ⊥(0) ≈ 1.9 nm. Using Equation (23) together with this B⊥c2(0) and our measured in-plane

j‖d(0) gave λ‖(0) = 124 nm and a corresponding ρs(0) = 1/λ2
‖(0). From ρs(0) = µ0ns(0)e2/m∗ ≈

µ0ne2/m applicable in the clean limit at T = 0, we get n ≈ 1.8× 1021 per cm3, approximating m∗ ≈ m.
This effective single-band value of n evaluated above is similar to n characteristic of high temperature
superconductors and about two orders of magnitude lower than n in highly-conductive metals such
as copper.



Condens. Matter 2019, 4, 54 13 of 16

Figure 7. Raw depairing current versus temperature for Bi2Te3/FeTe bridges: (a) Sample A and
(b) Sample B. The dashed horizontal lines provide the values Id(T → 0) ≥ 0.131 A and 0.136 A for
Samples A and B, respectively (adapted from Reference [46]).

Figure 8. Intrinsic normal-state resistivity of Bi2Te3/FeTe interfacial superconducting bridges, Samples
A and B (adapted from Reference [46]).

The low value of n together with the very high normal conductivity implies a rather long
scattering time τ and mean-free-path l. The Fermi wave number for this n computes to kF(3D) =

m∗vF/h̄ = (3π2n)1/3 = 3.8× 109 m−1 and kF(2D) = (2πnd)1/2 = 9.0× 109 m−1 in three and two
dimensions, respectively. In both cases, the Fermi wavelength λF = 2π/kF � d, validating the
continuum approximation for states along the perpendicular direction and justifying the anisotropic
3D treatment of the normal state. Then, from the Drude relationship ρ ≈ m/ne2τ, we get τ ≈ 10 ps,
which agrees well with the scattering rates (∼ h̄/0.05 meV = 13 ps) measured by Pan et al. [47]
using spin- and angle-resolved photoemission spectroscopy. Combining this value of τ with the
Fermi velocity vF = h̄kF/m ≈ 440 km/s, we get l = vFτ = 4.2 µm. The very long l, which well
exceeds the superconducting layer thickness d, indicates that scattering from the faces that bound the
superconducting layer was of a specular nature. This surprising dramatically low scattering indeed
supports the possible role of the topological surface states in the formation of the normal state that
underlies this exotic interfacial superconducting system.



Condens. Matter 2019, 4, 54 14 of 16

5. Concluding Remarks

Fast pulsed signals of short duration and low duty cycle make it possible to study transport
behavior in superconductors at extreme current densities, power densities, and electric fields. In this
article, we focused on the use of this technique in the measurement of one of the fundamental critical
parameters of the superconducting state, the depairing current jd. It was shown how through jd ,
one can obtain information on various other key parameters of the superconducting state, in particular
the penetration depth and consequent superfluid density, which cast light on the normal state. As an
example and illustration of this procedure, we described a recent study of the superconducting
system formed at the interface between a topological insulator and a chalcogenide. We hope that the
information provided here will encourage other groups to utilize this approach.
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