Systematics of the Excitation Spectrum and Form Factors of Baryons in Holographic QCD: from Confinement to Quark Degrees of Freedom

Guy F. de Téramond

Universidad de Costa Rica

Nucleon Resonance Structure
in Exclusive Electroproduction
at High Photon Virtualities
USC, August 13-15, 2012

Recent Review: GdT and S.J. Brodsky, arXiv:1203.4025 [hep-ph]

Gauge/Gravity Correspondence and QCD

- Review recent analytical insights into the nonperturbative nature of light-hadron bound states using the gauge/gravity correspondence [Maldacena (1998)]
- Description of strongly coupled ultra relativistic system using a dual gravity description in a higher dimensional space (holographic)
- Why is AdS space important? AdS $_{5}$ is a space of maximal symmetry, negative curvature and a fourdim boundary: Minkowski space
- Isomorphism of $S O(4,2)$ group of conformal transformations with generators $P^{\mu}, M^{\mu \nu}, K^{\mu}, D$, with the group of isometries of $\mathrm{AdS}_{5}{ }^{\text {a }}$
- Mapping of AdS gravity to QCD quantized at fixed light-front time gives a precise relation between wave functions in AdS space and the LF wavefunctions describing the internal structure of hadrons

[^0]- AdS_{5} metric:

$$
\underbrace{d s^{2}}_{L_{\mathrm{AdS}}}=\frac{R^{2}}{z^{2}}(\underbrace{\eta_{\mu \nu} d x^{\mu} d x^{\nu}}_{L_{\mathrm{Minkowski}}}-d z^{2})
$$

- A distance L_{AdS} shrinks by a warp factor z / R as observed in Minkowski space $(d z=0)$:

$$
L_{\mathrm{Minkowski}} \sim \frac{z}{R} L_{\mathrm{AdS}}
$$

- Since the AdS metric is invariant under a dilatation of all coordinates $x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, the variable z acts like a scaling variable in Minkowski space
- Short distances $x_{\mu} x^{\mu} \rightarrow 0$ maps to UV conformal AdS boundary $z \rightarrow 0$
- Large confinement dimensions $x_{\mu} x^{\mu} \sim 1 / \Lambda_{\mathrm{QCD}}^{2}$ maps to large IR region of AdS, $z \sim 1 / \Lambda_{\mathrm{QCD}}$
- Use isometries of AdS to map local interpolating operators at the UV boundary into modes propagating inside AdS

AdS Gravity Action

$$
\mathcal{R}_{N K L M}=-\frac{1}{R^{2}}\left(g_{N L} g_{K M}-g_{N M} g_{K L}\right)
$$

- AdS $_{5}$ metric $x^{M}=\left(x^{\mu}, z\right)$:

$$
d s^{2}=g_{M N} d x^{M} d x^{N}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

- Action for gravity coupled to scalar field in $\mathrm{AdS}_{5}\left(\Lambda=-\frac{6}{R^{2}}\right)$:

$$
S=\int d^{4} x d z \sqrt{g}\left(\frac{1}{\kappa^{2}}(\mathcal{R}-2 \Lambda)+\frac{1}{2}\left(g^{M N} \partial_{M} \Phi \partial_{N} \Phi-\mu^{2} \Phi^{2}\right)\right)
$$

- Equations of motion $\left(\sqrt{g}=(R / z)^{5}\right)$

$$
\begin{gathered}
\mathcal{R}_{M N}-\frac{1}{2} g_{M N} \mathcal{R}-\Lambda g_{M N}=0 \\
z^{3} \partial_{z}\left(\frac{1}{z^{3}} \partial_{z} \Phi\right)-\partial_{\nu} \partial^{\nu} \Phi-\left(\frac{\mu R}{z}\right)^{2} \Phi=0
\end{gathered}
$$

Light-Front Holographic Mapping

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

- Physical modes are plane-waves along x^{μ}-coordinates with four-momentum P^{μ} and invariant mass $P_{\mu} P^{\mu}=M^{2}: \quad \Phi_{P}(x, z)=e^{-i P \cdot x} \Phi(z)$
- Find AdS eom

$$
\left[-z^{3} \partial_{z}\left(\frac{1}{z^{3}} \partial_{z}\right)+\left(\frac{\mu R}{z}\right)^{2}\right] \Phi=M^{2} \Phi
$$

- Upon substitution $z \rightarrow \zeta$ and $\phi(\zeta) \sim \zeta^{-3 / 2} \Phi(\zeta)$ in AdS eom we find

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

with $U(\zeta)=0$ in the conformal AdS limit and $(\mu R)^{2}=-4+L^{2}$

- Identical with LFWE from Hamiltonian LF eom $P_{\mu} P^{\mu}|\phi\rangle=M^{2}|\phi\rangle$, where ζ is the invariant transverse distance between two partons $\zeta^{2}=x(1-x) b_{\perp}^{2}$ and the effective interaction U acts only on the valence sector
- AdS Breitenlohner-Freedman bound $(\mu R)^{2} \geq-4$ equivalent to LF QM stability condition $L^{2} \geq 0$

Meson Spectrum in Hard Wall Model

[LF Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

- How to break conformality and compute the hadronic spectrum ?
- Conformal model up to the confinement scale $1 / \Lambda_{\mathrm{QCD}}$ [Polchinski and Strassler (2002)]

$$
U(\zeta)=\left\{\begin{array}{lcc}
0 & \text { if } \quad \zeta \leq \frac{1}{\Lambda_{\mathrm{QCD}}} \\
\infty & \text { if } \quad \zeta>\frac{1}{\Lambda_{\mathrm{QCD}}}
\end{array}\right.
$$

- Confinement scale $\frac{1}{\Lambda_{\mathrm{QCD}}} \sim 1 \mathrm{Fm}, \quad \Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$
- Covariant version of MIT bag model: quarks permanently confined inside a finite region of space
- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int_{0}^{\Lambda_{\mathrm{QCD}}^{-1}} d \zeta \phi^{2}(z)=1$

$$
\phi_{L, k}(\zeta)=\frac{\sqrt{2} \Lambda_{Q C D}}{J_{1+L}\left(\beta_{L, k}\right)} \sqrt{\zeta} J_{L}\left(\zeta \beta_{L, k} \Lambda_{Q C D}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{L, k}=\beta_{L, k} \Lambda_{\mathrm{QCD}}
$$

Table 1: $I=1$ mesons. For a $q \bar{q}$ state $P=(-1)^{L+1}, C=(-1)^{L+S}$

L	S	n	$J^{P C}$	$I=1$ Meson
0	0	0	0^{-+}	$\pi(140)$
0	0	1	0^{-+}	$\pi(1300)$
0	0	2	0^{-+}	$\pi(1800)$
0	1	0	1^{--}	$\rho(770)$
0	1	1	1^{--}	$\rho(1450)$
0	1	2	1^{--}	$\rho(1700)$
1	0	0	1^{+-}	$b_{1}(1235)$
1	1	0	0^{++}	$a_{0}(980)$
1	1	1	0^{++}	$a_{0}(1450)$
1	1	0	1^{++}	$a_{1}(1260)$
1	1	0	2^{++}	$a_{2}(1320)$
2	0	0	2^{-+}	$\pi_{2}(1670)$
2	0	1	2^{-+}	$\pi_{2}(1880)$
2	1	0	3^{--}	$\rho_{3}(1690)$
3	1	0	4^{++}	$a_{4}(2040)$

Orbital and radial excitations for the π and the $\rho \mathrm{I}=1$ meson families ($\Lambda_{\mathrm{QCD}}=0.32 \mathrm{GeV}$)

- Pion is not chiral
- $\mathcal{M} \sim 2 n+L$ in contrast to usual Regge dependence $\mathcal{M}^{2} \sim n+L$
- Important $J-L$ splitting (different J for same L) in mesons not described by hard-wall model
- Radial modes not well described in hard-wall model

Higher Spin Wave Equations in AdS Space

- Description of higher spin modes in AdS space (Frondsal, Fradkin and Vasiliev)
- Spin- J in AdS represented by totally symmetric rank J tensor field $\Phi_{M_{1} \cdots M_{J}}$
- Action for spin- J field in $\operatorname{AdS}_{d+1} \quad\left(x^{M}=\left(x^{\mu}, z\right)\right)$

$$
\begin{aligned}
S=\frac{1}{2} \int d^{d} x d z \sqrt{g} e^{\varphi(z)}(& g^{M N} g^{M_{1} M_{1}^{\prime}} \cdots g^{M_{J} M_{J}^{\prime}} D_{M} \Phi_{M_{1} \cdots M_{J}} D_{N} \Phi_{M_{1}^{\prime} \cdots M_{J}^{\prime}} \\
& \left.-\mu^{2} g^{M_{1} M_{1}^{\prime}} \cdots g^{M_{J} M_{J}^{\prime}} \Phi_{M_{1} \cdots M_{J}} \Phi_{M_{1}^{\prime} \cdots M_{J}^{\prime}}+\cdots\right)
\end{aligned}
$$

where D_{M} is the covariant derivative which includes parallel transport (affine connection)

$$
D_{M} \Phi_{M_{1} \cdots M_{J}}=\partial_{M} \Phi_{M_{1} \cdots M_{J}}-\Gamma_{M M_{1}}^{K} \Phi_{K \cdots M_{J}}-\cdots-\Gamma_{M M_{J}}^{K} \Phi_{M_{1} \cdots K}
$$

- Dilaton background $\varphi(z)$ breaks conformality of the theory (vanishes in the UV limit)
- Physical hadron has plane-wave and polarization indices along $3+1$ physical coordinates

$$
\Phi_{P}(x, z)_{\mu_{1} \cdots \mu_{J}}=e^{-i P \cdot x} \Phi(z)_{\mu_{1} \cdots \mu_{J}}, \quad \Phi_{z \mu_{2} \cdots \mu_{J}}=\cdots=\Phi_{\mu_{1} \mu_{2} \cdots z}=0
$$

with four-momentum P_{μ} and invariant hadronic mass $P_{\mu} P^{\mu}=M^{2}$

- Construct effective action in terms of spin- J modes Φ_{J} with only physical degrees of freedom [H. G. Dosch, S. J. Brodsky and GdT]
- Find AdS wave equation for spin- J mode $\Phi_{J}=\Phi_{\mu_{1} \cdots \mu_{J}}$

$$
\left[-\frac{z^{d-1-2 J}}{e^{\varphi(z)}} \partial_{z}\left(\frac{e^{\varphi}(z)}{z^{d-1-2 J}} \partial_{z}\right)+\left(\frac{\mu R}{z}\right)^{2}\right] \Phi_{J}(z)=\mathcal{M}^{2} \Phi_{J}(z)
$$

[See also: T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012)]

Dual QCD Light-Front Wave Equation

$$
z \Leftrightarrow \zeta, \quad \Phi_{P}(z) \Leftrightarrow|\psi(P)\rangle
$$

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

- Upon substitution $z \rightarrow \zeta$ and $\phi_{J}(\zeta) \sim \zeta^{-3 / 2+J} e^{\varphi(z) / 2} \Phi_{J}(\zeta)$ in AdS WE

$$
\left[-\frac{z^{d-1-2 J}}{e^{\varphi(z)}} \partial_{z}\left(\frac{e^{\varphi(z)}}{z^{d-1-2 J}} \partial_{z}\right)+\left(\frac{\mu R}{z}\right)^{2}\right] \Phi_{J}(z)=\mathcal{M}^{2} \Phi_{J}(z)
$$

find LFWE $\quad(d=4)$

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

with

$$
U(\zeta)=\frac{1}{2} \varphi^{\prime \prime}(z)+\frac{1}{4} \varphi^{\prime}(z)^{2}+\frac{2 J-3}{2 z} \varphi^{\prime}(z)
$$

and $(\mu R)^{2}=-(2-J)^{2}+L^{2}$

- Unmodified AdS equations correspond to the kinetic energy terms of the partons inside a hadron
- Interaction terms in the QCD Lagrangian build the effective confining potential $U(\zeta)$ which acts on the valence sector and correspond to the truncation of AdS space in an effective dual gravity approximation

Meson Spectrum in Soft Wall Model

- Linear Regge trajectories [Karch, Katz, Son and Stephanov (2006)]
- Dilaton profile $\varphi(z)=+\kappa^{2} z^{2}$
- Effective potential: $U(z)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LFWE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

LFWFs $\phi_{n, L}(\zeta)$ in physical space-time: (L) orbital modes and (R) radial modes

- $J=L+S, I=1$ meson families $\mathcal{M}_{n, L, S}^{2}=4 \kappa^{2}(n+L+S / 2)$

$$
\begin{aligned}
& 4 \kappa^{2} \text { for } \Delta n=1 \\
& 4 \kappa^{2} \text { for } \Delta L=1 \\
& 2 \kappa^{2} \text { for } \Delta S=1
\end{aligned}
$$

Orbital and radial excitations for the $\pi(\kappa=0.59 \mathrm{GeV})$ and the $\rho \mathrm{I}=1$ meson families $(\kappa=0.54 \mathrm{GeV})$

- Triplet splitting for the $L=1, J=0,1,2, I=1$ vector meson a-states

$$
\mathcal{M}_{a_{2}(1320)}>\mathcal{M}_{a_{1}(1260)}>\mathcal{M}_{a_{0}(980)}
$$

- $J-L$ splitting in mesons and radial excitations are well described in soft-wall model

Fermionic Modes in AdS Space and Baryon Spectrum

[GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

Image credit: N. Evans

- Lattice calculations of the ground state hadron masses agree very with experimental values
- However, excitation spectrum of nucleon represents important challenge to LQCD due to enormous computational complexity beyond ground state configuration and multi-hadron thresholds
- Large basis of interpolating operators required in LQCD since excited nucleon states are classified according to irreducible representations of the lattice, not the angular momentum
- The gauge/gravity duality can give important insights into the strongly coupled dynamics of nucleons using simple analytical methods
- Analytical exploration of systematics of light-baryon resonances and nucleon form factors
- Extension of holographic ideas to spin- $\frac{1}{2}$ (and higher half-integral J) hadrons by considering propagation of RS spinor field $\Psi_{\alpha M_{1} \cdots M_{J-1 / 2}}$ in AdS space

Higher Spin Wave Equations in AdS Space

- For fermion fields in AdS one cannot break conformality with introduction of dilaton background since it can be scaled away leaving the action conformally invariant [I. Kirsch (2006)]
- Introduce an effective confining potential $V(z)$ in the action for a Dirac field in AdS_{d+1}

$$
S_{F}=\int d^{d} x d z \sqrt{g} g^{M_{1} M_{1}^{\prime}} \cdots g^{M_{T} M_{T}^{\prime}}\left(\bar{\Psi}_{M_{1} \cdots M_{T}}\left(i e_{A}^{M} \Gamma^{A} D_{M}-\mu-V(z)\right) \Psi_{M_{1}^{\prime} \cdots M_{T}^{\prime}}+\cdots\right)
$$

where D_{M} is the covariant derivative of the spinor field $\Psi_{\alpha M_{1} \cdots M_{T}}, \quad T=J-\frac{1}{2}$

$$
D_{M} \Psi_{M_{1} \cdots M_{T}}=\partial_{M} \Psi_{M_{1} \cdots M_{T}}-\frac{i}{2} \omega_{M}^{A B} \Sigma_{A B} \Psi_{M_{1} \cdots M_{T}}-\Gamma_{M M_{1}}^{K} \Psi_{K \cdots M_{T}}-\cdots-\Gamma_{M M_{T}}^{K} \Psi_{M_{1} \cdots K}
$$

- $M, N=1, \cdots, d+1$ curved space indices, $A, B=1, \cdots, d+1$ tangent indices
- e_{A}^{M} is the vielbein, $w_{M}^{A B}$ spin connection, $\Sigma_{A B}$ generators of the Lorentz group, $\Sigma_{A B}=\frac{i}{4}\left[\Gamma_{A}, \Gamma_{B}\right]$
- Γ^{A} tangent space Dirac matrices $\left\{\Gamma^{A}, \Gamma^{B}\right\}=\eta^{A B}$
- For d even we choose $\Gamma^{A}=\left(\Gamma^{\mu}, \Gamma^{z}\right)$ with $\Gamma_{z}=-\Gamma^{z}=\Gamma_{0} \Gamma_{1} \cdots \Gamma_{d-1}$
- For $d=4: \quad \Gamma^{A}=\left(\gamma^{\mu}, i \gamma_{5}\right)$
- Physical hadron has plane-wave, spinors, and polarization along $3+1$ physical coordinates

$$
\Psi_{P}(x, z)_{\mu_{1} \cdots \mu_{T}}=e^{-i P \cdot x} \Psi(z)_{\mu_{1} \cdots \mu_{T}}, \quad \Psi_{z \mu_{2} \cdots \mu_{T}}=\cdots=\Psi_{\mu_{1} \mu_{2} \cdots z}=0
$$

with four-momentum P_{μ} and invariant hadronic mass $P_{\mu} P^{\mu}=M^{2}$

- Construct effective action in terms of spin- J modes Ψ_{J} with only physical degrees of freedom [H. G. Dosch, S. J. Brodsky and GdT]
- Find AdS wave equation for spin- J mode $\Phi_{J}=\Phi_{\mu_{1} \cdots \mu_{J-1 / 2}}$

$$
\left[i\left(z \eta^{M N} \Gamma_{M} \partial_{N}+\frac{d}{2} \Gamma_{z}\right)-\mu R-R V(z)\right] \Psi_{J}=0
$$

upon μ-rescaling
[See also: T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012)]

Light-Front Mapping and Cluster Decomposition

- Upon substitution $z \rightarrow \zeta$ and

$$
\Psi(x, z)=e^{-i P \cdot x} z^{2} \psi(z) u(P)
$$

find LFWE for $d=4$

$$
\begin{aligned}
\frac{d}{d \zeta} \psi_{+}+\frac{\nu+\frac{1}{2}}{\zeta} \psi_{+}+U(\zeta) \psi_{+} & =\mathcal{M} \psi_{-} \\
-\frac{d}{d \zeta} \psi_{-}+\frac{\nu+\frac{1}{2}}{\zeta} \psi_{-}+U(\zeta) \psi_{-} & =\mathcal{M} \psi_{+}
\end{aligned}
$$

where $U(\zeta)=\frac{R}{\zeta} V(\zeta)$

- ζ is the x-weighted definition of the transverse impact variable of the $n-1$ spectator system [S. J. Brodsky and GdT, PRL 96, 201601 (2006)]

$$
\zeta=\sqrt{\frac{x}{1-x}}\left|\sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right|
$$

where $x=x_{n}$ is the longitudinal momentum fraction of the active quark

- Same multiplicity of states for mesons and baryons !

Baryon Spectrum in Soft-Wall Model

- Choose linear potential $U=\kappa^{2} \zeta$
- LF nucleon eigenfunctions $\quad \nu=L+1 \quad(\tau=3)$

$$
\begin{aligned}
\psi_{+}(\zeta) & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{\frac{3}{2}+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta) & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{\frac{5}{2}+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)=1
$$

- Eigenvalues

$$
\mathcal{M}_{n, L}^{2}=4 \kappa^{2}(n+L+2)+C
$$

- Full $J-L$ degeneracy (different J for same L) for baryons along given trajectory !

$S U(6)$	K	S	L	n	Baryon State
56	0	$\frac{1}{2}$	0	0	$N \frac{1}{2}^{+}(940)$
	0	$\frac{3}{2}$	0	0	$\Delta \frac{3}{2}+(1232)$
56	1	$\frac{1}{2}$	0	1	$N \frac{1}{2}+{ }^{(1440)}$
	1	$\frac{3}{2}$	0	1	$\Delta \frac{3}{2}^{+}(1600)$
70	1	$\frac{1}{2}$	1	0	$N \frac{1}{2}^{-}{ }^{(1535)} N \frac{3}{2}^{-}(1520)$
	1	$\frac{3}{2}$	1	0	$N \frac{1}{2}^{-}{ }^{(1650) ~} N \frac{3}{2}^{-}{ }^{(1700)} N \frac{5}{2}^{-}{ }^{(1675)}$
	1	$\frac{1}{2}$	1	0	$\Delta \frac{1}{2}^{-}{ }^{(1620) ~} \Delta \frac{3}{2}^{-}{ }^{(1700)}$
56	2	$\frac{1}{2}$	0	2	$N \frac{1}{2}^{+}(1710)$
	2	$\frac{1}{2}$	2	0	$N \frac{3}{2}^{+}{ }^{(1720) ~} N \frac{5}{2}^{+}(1680)$
	2	$\frac{3}{2}$	2	0	$\Delta \frac{1}{2}^{+}{ }_{(1910)} \Delta \frac{3}{2}^{+}{ }_{(1920)} \Delta \frac{5}{2}^{+}{ }_{(1905)} \Delta \frac{7}{2}^{+}{ }_{(1950)}$
70	2	$\frac{3}{2}$	1	1	$N \frac{1}{2}^{-} \quad N \frac{3}{2}^{-}(1875) N \frac{5}{2}^{-}$
	2	$\frac{3}{2}$	1	1	$\Delta \frac{5}{2}{ }^{-}(1930)$
56	3	$\frac{1}{2}$	2	1	$N \frac{3}{2}^{+}(1900) N \frac{5}{2}^{+}$
70	3	$\frac{1}{2}$	3	0	$N \frac{5}{2}^{-} \quad N \frac{7}{2}^{-}$
	3 3	$\frac{3}{2}$ $\frac{1}{2}$	3 3	0 0	$\begin{gathered} N \frac{3}{2}-\quad N \frac{5}{2}^{-} \quad N \frac{7}{2}^{-}(2190) N \frac{9}{2}^{-}(2250) \\ \Delta \frac{5}{2}^{-} \Delta \frac{7}{2}^{-} \end{gathered}$
56	4	$\frac{1}{2}$	4	0	$N \frac{7}{2}+\quad N \frac{9}{2}+{ }^{+}(2220)$
	4	$\frac{3}{2}$	4	0	$\Delta \frac{5}{2}^{+} \quad \Delta \frac{7}{2}+\quad \Delta \frac{9}{2}+\quad \Delta \frac{11}{2}+{ }_{(2420)}$
70	5	$\frac{1}{2}$	5	0	$N \frac{9}{2}^{-} \quad N \frac{11}{2}^{-}$
	5	$\frac{3}{2}$	5	0	$N \frac{7}{2}^{-} \quad N \frac{9}{2}^{-} \quad N \frac{11}{2}^{-}(2600) N \frac{13}{2}^{-}$

- Gap scale $4 \kappa^{2}$ determines trajectory slope and spectrum gap between plus-parity spin- $\frac{1}{2}$ and minusparity spin- $\frac{3}{2}$ nucleon families !
- No $J-L$ splitting !

Plus-minus nucleon spectrum gap for $\kappa=0.49 \mathrm{GeV}$

- Fix the energy scale to the proton mass for the lowest state $n=0, L=0: C=-4 \kappa^{2}$
- Phenomenological rules for increase in mass \mathcal{M}^{2} to construct full baryon spectrum from proton state

$$
\begin{aligned}
& 4 \kappa^{2} \text { for } \Delta n=1 \\
& 4 \kappa^{2} \text { for } \Delta L=1 \\
& 2 \kappa^{2} \text { for } \Delta S=1 \\
& 2 \kappa^{2} \text { for } \Delta P= \pm
\end{aligned}
$$

- Eigenvalues

$$
\begin{aligned}
& \mathcal{M}_{n, L, S}^{2(+)}=4 \kappa^{2}(n+L+S / 2+3 / 4) \\
& \mathcal{M}_{n, L, S}^{2(-)}=4 \kappa^{2}(n+L+S / 2+5 / 4)
\end{aligned}
$$

New state $N(1875)$ for $\kappa=0.49 \mathrm{GeV}$

Orbital and radial excitations for positive parity N and Δ baryon families ($\kappa=0.49-0.51 \mathrm{GeV}$)

- Since $\mathcal{M}_{n, L, S=\frac{3}{2}}^{2(+)}=\mathcal{M}_{n, L, S=\frac{1}{2}}^{2(-)}$ positive and negative-parity Δ states are in the same trajectory [See also: H. Forkel, M. Beyer and T. Frederico, JHEP 0707, 077 (2007)]

Δ orbital trajectories for $n=0$ and $\kappa=0.51 \mathrm{GeV}$
- $\Delta(1930)$ quantum number assignment (E. Klempt and J. M. Richard (2010): $S=3 / 2, L=1, n=1$
- Find $\mathcal{M}_{\Delta(1930)}=4 \kappa \simeq 2 \mathrm{GeV}$ compared with experimental value 1.96 GeV
- All known baryons well described by holographic formulas for $\mathcal{M}_{n, L, S}^{2(+)}$ and $\mathcal{M}_{n, L, S}^{2(-)}$

Light-Front Holographic Mapping of Current Matrix Elements

[S. J. Brodsky and GdT, PRL 96, 201601 (2006) Mapping of EM currents
[S. J. Brodsky and GdT, PRD 78, 025032 (2008)] Mapping of energy-momentum tensor

- EM transition matrix element in QCD: local coupling to pointlike constituents

$$
\left\langle P^{\prime}\right| J^{\mu}|P\rangle=\left(P+P^{\prime}\right)^{\mu} F\left(Q^{2}\right)
$$

where $Q=P^{\prime}-P$ and $J^{\mu}=e_{q} \bar{q} \gamma^{\mu} q$

- EM hadronic matrix element in AdS space from coupling of external EM field propagating in AdS with extended mode $\Phi(x, z)$

$$
\begin{aligned}
\int d^{4} x d z \sqrt{g} A^{M}(x, z) \Phi_{P^{\prime}}^{*}(x, z) \overleftrightarrow{\partial}_{M} \Phi_{P}(& x, z) \\
& \sim(2 \pi)^{4} \delta^{4}\left(P^{\prime}-P\right) \epsilon_{\mu}\left(P+P^{\prime}\right)^{\mu} F\left(Q^{2}\right)
\end{aligned}
$$

- Expressions for the transition amplitudes look very different but a precise mapping of the matrix elements can be carried out at fixed light-front time : $\Phi_{P}(z) \Leftrightarrow|\psi(P)\rangle$
- Substitute hadronic modes $\Phi(x, z)$ in the AdS EM matrix element

$$
\Phi_{P}(x, z)=e^{-i P \cdot x} \Phi(z), \quad \Phi(z) \rightarrow z^{\tau}, \quad z \rightarrow 0
$$

- Find form factor in AdS as overlap of normalizable modes dual to the in and out hadrons Φ_{P} and $\Phi_{P^{\prime}}$, with the non-normalizable mode $V(Q, z)$ dual to external EM source [Polchinski and Strassler (2002)].

$$
\begin{gathered}
F\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} V(Q, z) \Phi^{2}(z) \rightarrow\left(\frac{1}{Q^{2}}\right)^{\tau-1} \\
V(Q, z) \rightarrow z Q K_{1}(z Q)
\end{gathered}
$$

At large Q important contribution to the integral from $z \sim 1 / Q$ where $\Phi \sim z^{\tau}$ and power-law point-like scaling is recovered [Polchinski and Susskind (2001)]

- Compare with electromagnetic FF in LF QCD for arbitrary Q. Expressions can be matched only if LFWF is factorized

$$
\psi(x, \zeta, \varphi)=e^{i M \varphi} X(x) \frac{\phi(\zeta)}{\sqrt{2 \pi \zeta}}
$$

- Find

$$
X(x)=\sqrt{x(1-x)}, \quad \phi(\zeta)=(\zeta / R)^{-3 / 2} \Phi(\zeta), \quad z \rightarrow \zeta
$$

- Dressed current for soft-wall model

$$
V(Q, z)=\Gamma\left(1+\frac{Q^{2}}{4 \kappa^{2}}\right) U\left(\frac{Q^{2}}{4 \kappa^{2}}, 0, \kappa^{2} z^{2}\right)
$$

expanded as a sum of poles [Grigoryan and Radyushkin, Phys. Lett. B 650, 421 (2007)]

$$
V(Q, z)=4 \kappa^{4} z^{2} \sum_{n=0}^{\infty} \frac{L_{n}^{1}\left(\kappa^{2} z^{2}\right)}{Q^{2}+M_{n}^{2}}
$$

- Form factor in soft-wall model expressed as $\tau-1$ product of poles along vector radial trajectory (twist $\tau=N+L$) [Brodsky and GdT, Phys. Rev. D77 (2008) 056007]

$$
F_{\tau}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right) \cdots\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\tau-2}}^{2}}\right)}
$$

- Analytical form $F\left(Q^{2}\right)$ incorporates correct scaling from constituents and mass gap from confinement
- $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$ since VM is twist-2 $q \bar{q}$ and not twist 3 squark-squark with $L=1$
- Finite charge radius and nonperturbative pole structure generated with "dressed" EM current in AdS

Continuous line: confined current, dashed line free current.

- Effective LF wave function

$$
\psi\left(x, \mathbf{b}_{\perp}\right)=\kappa \frac{(1-x)}{\sqrt{\pi \ln \left(\frac{1}{x}\right)}} e^{-\frac{1}{2} \kappa^{2} \mathbf{b}_{\perp}^{2}(1-x)^{2} / \ln \left(\frac{1}{x}\right)}
$$

- Nucleon EM form factor

$$
\left\langle P^{\prime}\right| J^{\mu}(0)|P\rangle=u\left(P^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q^{\nu}}{2 \mathcal{M}} F_{2}\left(q^{2}\right)\right] u(P)
$$

- EM hadronic matrix element in AdS space from non-local coupling of external EM field in AdS with fermionic mode $\Psi_{P}(x, z)$

$$
\begin{aligned}
& \int d^{4} x d z \sqrt{g} \bar{\Psi}_{P^{\prime}}(x, z) e_{M}^{A} \Gamma_{A} A^{M}(x, z) \Psi_{P}(x, z) \\
& \sim(2 \pi)^{4} \delta^{4}\left(P^{\prime}-P-q\right) \epsilon_{\mu} u\left(P^{\prime}\right) \gamma^{\mu} F_{1}\left(q^{2}\right) u(P)
\end{aligned}
$$

- Effective AdS/QCD model: additional 'anomalous' term in the 5-dim action
[Abidin and Carlson, Phys. Rev. D79, 115003 (2009)]

$$
\begin{aligned}
\int d^{4} x d z \sqrt{g} \bar{\Psi} e_{M}^{A} e_{N}^{B}\left[\Gamma_{A}, \Gamma_{B}\right] & F^{M N} \Psi \\
& \sim(2 \pi)^{4} \delta^{4}\left(P^{\prime}-P-q\right) \epsilon_{\mu} u\left(P^{\prime}\right) \frac{i \sigma^{\mu \nu} q^{\nu}}{2 \mathcal{M}} F_{2}\left(q^{2}\right) u(P)
\end{aligned}
$$

- Generalized Parton Distributions in AdS/QCD
[Vega, Schmidt, Gutsche and Lyubovitskij, Phys.Rev. D83 (2011) 036001]
- Use $S U(6)$ flavor symmetry and normalization to static quantities $G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)$

$$
F_{1}^{p}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}, \quad F_{2}^{p}\left(Q^{2}\right)=\frac{\chi_{p}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)}
$$

Page 31

Nucleon Transition Form Factors

- Orthonormality of Laguerre functions $\quad F_{1}{ }_{N \rightarrow N^{*}}(0)=0$

$$
F_{1 N \rightarrow N^{*}}^{p}\left(Q^{2}\right)=\frac{\sqrt{2}}{3} \frac{\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)}
$$

Proton transition form factor to the first radial excited state. Data from JLab

Flavor Decomposition of Elastic Nucleon Form Factors

G. D. Cates et al. Phys. Rev. Lett. 106, 252003 (2011)

- Proton SU(6) WF: $\quad F_{u, 1}^{p}=\frac{5}{3} G_{+}+\frac{1}{3} G_{-}, \quad F_{d, 1}^{p}=\frac{1}{3} G_{+}+\frac{2}{3} G_{-}$
- Neutron SU(6) WF: $\quad F_{u, 1}^{n}=\frac{1}{3} G_{+}+\frac{2}{3} G_{-}, \quad F_{d, 1}^{n}=\frac{5}{3} G_{+}+\frac{1}{3} G_{-}$

$$
G_{+}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}
$$

and

$$
G_{-}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}^{2}}\right)}
$$

PRELIMINARY

Pion Transition Form-Factor

[S. J. Brodsky, F.-G. Cao and GdT, arXiv:1005.39XX]

- Definition of $\pi-\gamma$ TFF from $\gamma^{*} \pi^{0} \rightarrow \gamma$ vertex in the amplitude $e \pi \rightarrow e \gamma$

$$
\Gamma^{\mu}=-i e^{2} F_{\pi \gamma}\left(q^{2}\right) \epsilon_{\mu \nu \rho \sigma}\left(p_{\pi}\right)_{\nu} \epsilon_{\rho}(k) q_{\sigma}, \quad k^{2}=0
$$

- Asymptotic value of pion TFF is determined by first principles in QCD:
$Q^{2} F_{\pi \gamma}\left(Q^{2} \rightarrow \infty\right)=2 f_{\pi} \quad$ [Lepage and Brodsky (1980)]
- Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

$$
\begin{aligned}
\int d^{4} x \int d z \epsilon^{L M N P Q} A_{L} \partial_{M} & A_{N} \partial_{P} A_{Q} \\
& \sim(2 \pi)^{4} \delta^{(4)}\left(p_{\pi}+q-k\right) F_{\pi \gamma}\left(q^{2}\right) \epsilon^{\mu \nu \rho \sigma} \epsilon_{\mu}(q)\left(p_{\pi}\right)_{\nu} \epsilon_{\rho}(k) q_{\sigma}
\end{aligned}
$$

- Find $\left(\phi(x)=\sqrt{3} f_{\pi} x(1-x), \quad f_{\pi}=\kappa / \sqrt{2} \pi\right)$

$$
Q^{2} F_{\pi \gamma}\left(Q^{2}\right)=\frac{4}{\sqrt{3}} \int_{0}^{1} d x \frac{\phi(x)}{1-x}\left[1-e^{Q^{2}(1-x) / 4 \pi^{2} f_{\pi}^{2} x}\right]
$$

normalized to the asymptotic DA [Musatov and Radyushkin (1997)]

- The CS form is local in AdS space and projects out only the asymptotic form of the pion DA

Pion-gamma transition form factor

Higher Fock Components in LF Holographic QCD

- Effective interaction leads to $q q \rightarrow q q, q \bar{q} \rightarrow q \bar{q}$ but also to $q \rightarrow q q \bar{q}$ and $\bar{q} \rightarrow \bar{q} q \bar{q}$
- Higher Fock states can have any number of extra $q \bar{q}$ pairs, but surprisingly no dynamical gluons
- Example of relevance of higher Fock states and the absence of dynamical gluons at the hadronic scale

$$
|\pi\rangle=\psi_{q \bar{q} / \pi}|q \bar{q}\rangle_{\tau=2}+\psi_{q \bar{q} q \bar{q}}|q \bar{q} q \bar{q}\rangle_{\tau=4}+\cdots
$$

- Modify form factor formula introducing finite width: $q^{2} \rightarrow q^{2}+\sqrt{2} i \mathcal{M} \Gamma \quad\left(P_{q \bar{q} q \bar{q}}=13 \%\right)$

Conclusions

- The gauge/gravity duality leads to a simple analytical frame-independent nonperturbative semiclassical approximation to the light-front Hamiltonian problem for QCD: "Light-Front Holography"
- Unlike usual instant-time quantization the Hamiltonian equation in the light-front is frame independent and has a structure similar to eigenmode equations in AdS
- AdS transition matrix elements (overlap of AdS wave functions) map to current matrix elements in LF QCD (convolution of frame-independent light-front wave functions)
- Mapping of AdS gravity to boundary QFT quantized at fixed light-front time gives a precise relation between holographic wave functions in AdS and LFWFs describing the internal structure of hadrons
- No constituent gluons
- Improve the semiclassical approximation: introduce nonzero quark masses and short-range Coulomblike gluonic corrections (heavy and heavy-light quark systems)

[^0]: ${ }^{\text {a }}$ Isometry group: most general group of transformations which leave invariant the distance between two points: dimension of isometry group of AdS_{d+1} is $\frac{(d+1)(d+2)}{2}$

