High–\(Q^2\) resonance production in QCD
C. Weiss (JLab), EmNN*2012 Workshop, U. South Carolina, 13–Aug–12

- Transition form factors at high \(Q^2\)
 Wave function description
 Selection of configurations
 Small–size vs. end–point configurations
 Dynamical origin: pQCD, non–perturbative interactions

- Lessons from elastic form factors
 Pion FF: Model–independent analysis
 \(\text{LCWF} \leftrightarrow \text{large}–x \text{ PDFs. Miller, Strikman, CW 11}\)
 Nucleon FF: Light–cone sum rules \(\rightarrow\) Talk Braun

- Toward \(N^*\) transition FFs in QCD
 \(\pi N\) near threshold: Chiral LETs
 \(N^*\) DAs from large–\(N_c\) limit (\(\Delta\))
 Dynamical resonances from \(\chi\)EFT (\(S_{11}\))
 Lattice QCD (\(N^*1535\))

Correct high–\(Q^2\) asymptotics
QCD DOF, light–front formulation

Non–perturbative interactions
Chiral symmetry–breaking forces \(\rightarrow\) SDE

Clean interface quarks–hadrons
Wave functions, distribution amplitudes

Meson–baryon interactions parametrically controlled
Large–\(N_c\), \(\chi\)EFT
Wave function description

A) Infinite–momentum frame $P \to \infty$
- Gribov, Feynman; Bjorken, Kogut

B) Light–front quantization time $= x^+$
- WFs universal, frame–independent. Brodsky et al.

Momentum transfer transverse $t = -\Delta^2$
- Frame appropriate for $t \to \infty$, masses fixed

Hadron resolved in pointlike constituents with momentum fraction x_i, transv. position r_i

Quantum–mechanical superposition: Configs with different particle number, spatial size

Current operator sees transition density

$$F(t) = \int d^2b \ e^{i\Delta b} \ \rho(b) \quad \text{2D Fourier}$$

$$\rho(b) = \sum_{\text{configs}} \int dx \ \psi^*(x, r, ..) \psi(x, r, ..)$$

Selection of configurations

Large $|t| \leftrightarrow$ Small b
- Singularity?

What kind of configurations contribute to density at small b?
Transition FF: Small–size configurations

- Two types of configurations contribute to small–b density
 \[x \sim \frac{1}{3} \quad \text{size} \ll R \quad \text{small–size} \]
 \[x \rightarrow 1 \quad \text{size} \sim R \quad \text{end–point} \]

- Basic questions
 - What is their relative importance?
 Probability of end–point configurations constrained by quark PDF at $x \rightarrow 1$
 - How do they arise dynamically?
 Perturbative vs. non–perturbative interactions?
 Correlations in light–front wave function?

- Rest frame picture
 - Can be rigorously discussed in light–front quantization
 Intuition from non–relativistic systems:
 Angular momentum, orbital motion, etc.
Transition FF: Dynamical origin of small–size confs

- Perturbative interactions
 High–momentum component of wave function built up by pQCD interactions
 "Soft" wave function $k_T \sim R^{-1}$ as source
 $\Phi(x_i | \mu^2) = \int d^2 k_{Ti} \psi(x_i, k_{Ti})$ distribution amplitude
 Responsible for leading $|t| \to \infty$ asymptotics of pion FF Brodsky Lepage; Efremov, Radyushkin: pion

- Non–perturbative interactions
 Chiral symmetry breaking in QCD induced by short–range non–perturbative forces
 Range $\rho \sim 0.2 - 0.3$ fm $\ll R$
 Instanton vacuum model: Shuryak; Diakonov, Petrov
 Schwinger–Dyson equations \rightarrow Talk Roberts
Pion form factor: Transition density

- Pion form factor $F_\pi(t)$
- Transition density $\rho(b)$

Calculated from dispersion integral over timelike FF from e^+e^- data
Miller, Strikman, CW 11

Model–independent, controlled accuracy

High density at center $b \to 0$

Im$F_\pi(t)$ from analysis of e^+e^- data. Bruch et al. 05
Pion form factor: Small–size configurations

- Is density in center due to small–size or end–point configurations?

- Model–independent assessment

 Miller, Strikman, CW 10

 End–point contribution constrained by quark density in pion at \(x \to 1 \)

 \(\pi A \) Drell–Yan data

 Density in center of pion mostly from small–size configurations!

- Dynamical explanation

 Small–size configurations in pion WF from chiral symmetry–breaking interactions
Nucleon FF: Configurations

- Transition densities known from FF data
- More complex system, more possibilities

 Uniform squeezing or diquark–like configurations?

 Contribution of end-point configurations $x \to 1$?
 Related to large--x parton densities JLab 12 GeV

 Mean–field picture generally successful:
 Quark model, chiral soliton $N_c \to \infty$
 Nature of dynamical correlations?

- Spin and orbital angular momentum

 $Q^2 F_2/F_1$ suggests important role
 of orbital angular momentum Belitsky, Ji, Yuan 03

- Systematic approach: Light–cone sum rules

 Balitsky, Braun, Kolesnichenko 89; Braun et al. 02+

 pQCD–generated small–size configurations give leading asymptotic contribution

 End–point contributions reformulated as higher twist

 Can results be explained/reproduced in simple terms?
Nucleon FF: Key issues

• What is the relative importance of small–size and end–point configurations?
 Can be investigated in quasi–model independent manner!

• What is the role of non–perturbative short–distance interactions responsible for χ_{SB} in QCD
 Think of them as correlations between elementary QCD degrees of freedom
 Correlation length $\rho \sim 0.2 - 0.3 \text{ fm} \ll \text{hadronic size}$
 Express in language of light–front wave function
 Schweitzer, Strikman, CW 12: $q\bar{q}$ correlations
Toward N^*: Near-threshold πN

- Same picture applies to high-Q^2 production of πN near threshold $W = M_N + M_\pi + \epsilon$

 $\Phi_{\pi N}(x_1 x_2 x_3; \zeta, W)$ distribution amplitude,

 $\zeta \leftrightarrow \cos \theta_{\text{CM}}$, partial wave expansion possible

- Soft-pion theorem for πN DA

 $\langle \pi N | \psi \psi \psi | 0 \rangle \leftrightarrow \langle N | [Q_{\text{axial}}, \psi \psi \psi] | 0 \rangle$

 chiral rotation of QCD quark operator

- CLAS 6 GeV data \rightarrow Talk K. Park

 LC sum rule calculations \rightarrow Talk Braun
Toward N^*: Resonances in QCD

- **QCD description of high-Q^2 N^* production**
 \[\Phi_{N^*}(x_1 x_2 x_3) \text{ resonance distribution amplitude} \]
 How to define “resonance” in QCD?
 Need parametric control of hadronic FSI!
 Several possibilities

- **Large-N_c limit of QCD**
 Semiclassical limit. 'tHooft, Witten
 \[N, \Delta \text{ degenerate, mass splitting } \sim 1/N_c \]
 \[N, \Delta \text{ wave functions related: Rotational states} \]
 Meson–meson interactions suppressed, meson–baryon interactions strong:
 \[g_{MM} \sim 1/\sqrt{N_c} \ll g_{MBB} \sim \sqrt{N_c} \]
 Guidance for phenomenology of MB and MM interactions
 Should be explored further!
Toward N^*: Dynamical generation of resonances

- Can one generate resonances dynamically through hadronic FSI? ... at least some?

- Chiral effective field theory
 Unitarized χEFT interactions, Bethe–Salpeter equation
 Constrained by chiral low–energy theorems
 Reasonable results for $S_{11}(1535,1650)$

 Could it be extended to πN DAs with near–threshold DAs as input?
 χEFT guarantees universality, controlled accuracy

- Alt: Empirical phase shifts
 ρ, ρ' DAs from $\pi\pi$ near threshold
 M. Polyakov, NPB555 (1999) 231; applied at HERA
Toward N^*: DAs from Lattice QCD

- N^* distribution amplitudes from lattice
 → Talk Braun

$N^*(1535)$ parity–partner of N, by–product of nucleon calculation

First non–trivial moment determines distribution of bulk strength

- Transition FFs from light–cone sum rules

Power corrections estimated using asymptotic DAs

Promising “hybrid” approach

Higher moments and "shape" of DA from Lattice?
Higher–twist DAs for power corrections?

V. Braun et al., PRL 103 (2009) 072001.
Toward N^*: Key issues

- Explore regions where hadronic FSI is parametrically controlled

 Large–N_c limit of QCD

 Chiral near–threshold region → dynamically generated resonances

- Assess ratio non–resonant/resonant production in QCD

 Information from quark–hadron duality