Channel coupling in exclusive reactions at high energies and high momentum transfers

- Mostly high energy (vs): above p threshold
 - Issues: degrees of freedom?
 - Toward JLab12
 - Lessons for lower vs

Scaling

Large t and u ($\approx s$)

- Dimensional Scaling: do≈ s^{-N}
- Advocate pQCD
- But strong channel coupling mimics scaling

Available energies too low

Windows and opportunities at 12+ GeV?

$p(\gamma,\pi^+)n$: cuts

- •Low *t*: π and ρ Regge
- •Low u: N and Δ Regge
- •Large u/t : channel coupling

- •Intermediate energies:
 - -one channel dominates: p
 - -Forward peaked cross section
- •High energies?

 $\gamma\,\text{p}\to\text{p V:}$ dominant processes

$p(\gamma,\pi^+)n: \rho^0 p$ cut

$p(\gamma,\pi^+)n$: scaling

- •No quarks explicitly needed!
- •Natural explanation of scaling and deviations at low energies Threshold for ρ production

Virtual photons: p(e,e'π⁺)n

- *t* dependent EM form factors
- To date: t not large enough
- →JLAB12

Other approaches:

•Kroll: Tranversity

•Mosel: s-channel

p(e,e' π^0)p: ρ^+ n and $\rho^{+-}\Delta$ cuts

- •p⁺ cross section: large at $Q^2 \approx 3 \text{ GeV}^2$ (CLAS) small at $Q^2=0$
- • $\rho \rightarrow \pi$ cross section larger than $\omega \rightarrow \pi$ cross section
- •△ intermediate states as important as neutron one

$P(e,e'p^+)N$

JLab HallA kinematics

$p(e,e'\pi^0)p$: low Q^2

- •Does not compromise the good agreement at Q2=0
- •Helps to get rid of the node, for Q2<1 GeV²
- •A fine tuning of the EM form factors may improve the picture

Other approaches: Kroll, Golstein & al. (tranversity) (Strictly valid at high Q2, low t)

Light to heavy quark sector

- •Hadronic picture of the light quark sector:
 - •large *t* (scaling)
 - •large Q² (DVCS, π^0 ,...)
 - No quark explicitly needed
- Consistent links between various channels
- •Comes from the large production and absorption cross sections of the ρ
- •Coupling to the ρ^0 survives at high energy (π^+ , Compton,...)
- •Coupling to the ω and ρ^{\pm} suppressed at high energy $(\pi^{0},...)$
- •→Strange quark sector
- \rightarrow Heavy quark sector at JLab12 (ϕ , J/ ψ ,....)
 - •Weak channel coupling ?
 - •Quark/gluon picture makes more sense?

Strange Quark sector

- 1. Large *t* and *u*: data not conclusive
- 2. Channel coupling: less important?
- 3. Coupling to the ρ: under study
- 4. Toward JLab12

φ Meson Photoproduction at **High Transfer t**JLab Exp. 93-031 (CLAS)

Strange Quarks
Gluon Exchange

High t
Small Impact b

Quark Correlations

Gluon Propagator From Lattice

To be extended up to $E_{\gamma} = 11 \text{ GeV}$

ωφ mixing: nucleon target

$$T_{loop} = -i \frac{mp_{c.m.}}{16\pi^2 \sqrt{s}} \int d\Omega_p \sum_{m_p} (m_f | T_{\omega p}(t_{\omega \phi}) | m_p) (m_p | T_{\gamma \omega}(t_{\gamma \omega}) | m_i)$$

No free parameters!

Approach to scaling

- •2 gluon exchange scales for s> 12 GeV²
- •The oscillation around scaling comes from coupling to the ω channel
- •No data above Eγ= 4.5 GeV
- Coupled channel effects suppressed at high energies
- •→ 12 GeV+?
- • \rightarrow p(e,e' ϕ)p

Conclusion (large \sqrt{s})

- Light quark sector:
 - Large unitarity corrections
 - Hadronic picture still successful
 - Issue: equivalence between hadronic and quark descriptions?
- Strange quark sector:
 - Smaller unitarity corrections
 - Large enough cross sections
 - Quarks and partons are expected to make more sense
- Charmed quark sector
 - Small cross sections
 - At stake: gluonic structure of the nucleon

Back to lower Vs

- ◆ Vs decreases → narrower range in t
- Hadronic picture makes more sense than quark one
- Many coupled channels
- Select the prominent resonances and determine their transition form factors at the highest Q²
 - Physical Background?
- Regge poles average through the resonances
 - Be carefull not to add resonances and Regge amplitudes!

K⁺Λ at low energies

- •Forward: K and K* Regge
- •Backward: Λ and Σ* Regge

- Many overlaping resonances
- •Regge averages over resonances

- •Coupling with the π channels
- Under study

Back-up slides

JLab HallB kinematics

Charm in Nuclei at Threshold

- Large t_{min}, large m_c: Partons makes more sense
- $I_F \le 1$ fm: Access to $\sigma_{J/\Psi N}$
 - Scattering of a full fledge charmonium (NO CT)
- Search for Charmonium bound states
 - Attractive Van der Waals forces?
- Gluonic structure of the nucleon
- Virgin field!!

2 vs 3 gluon exchange

(Brodsky et al., PLB498 (2001) 23)

$$x\rightarrow 1 xg(x) \approx (1-x)^{ns}$$

```
•d\sigma/dt = N (1-x)<sup>2</sup> F<sup>2</sup><sub>2g</sub>(t) 2 gluons

•d\sigma/dt = N (1-x)<sup>0</sup> F<sup>2</sup><sub>3g</sub>(t) 3 gluons

x \approx (E_{th} / E)_{\gamma} = (s_{th} - m^2)/(s - m^2)
```


Experiment badly needed near threshold

J/ψ Cross sections

Models of the nucleon

Pertubative gluon propagator

Link with gluon density xg(x)

Energy dependency

But *t*=0

[Ryskin et al., Brodsky et al.]

Coupling to the same quark

 $t\neq 0 \Rightarrow F1(t)$

But energy independent

[Donnachie-Landshoff]

Non perturbative gluon prop.

Coupling to different quarks

Large t

Quark correlations

[Cano-Laget]

⇔ Gluon GPD?

Non Perturbative Partonic Regime

Frozen $\alpha_s = 0.23$

Constituents of: - Exchanged Quanta

- Hadrons

Constants Fixed from Other Channels:

- Lattice calc.: gluon dressed propagator

- F₁(t): proton correlated w.f.

- φ radiative decay: φ w.f.

Issues

- •Light quark sector:
 - Channel coupling mimics scaling
- •Strange and charmed quark sectors:
 - Partons make more sense
- •JLab12 and higher?
- •Few nucleon targets: Color Tansparency?

VCS and DVCS: Phys. Rev. C76, 052201(R) 2007

Charged pion: Phys. Lett. B685, 146 (2010)

Neutral pion: Phys. Lett. B895,199 (2011)

φ **meson**: Phys. Lett. B680, 417 (2009)

J/ψ meson: Phys. Lett. B498, 23 (2001)

Deuterium: Phys. Rev. C73, 044003 (2006); C75,014002 (2007)