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Thesis Summary

Beginning with the Democritic postulate of an atomic division of all matter, sci-

ence has strove to dig ever deeper into what makes up the world we interact with

every day. When the atom was discovered to be a composite particle, further probing

the tiniest scales imaginable discovered the nucleus, and yet it too was later found

to be made up of its own compound particles. These protons and neutrons, called

baryons, or more specifically the nucleons, were eventually discovered to be part of an

isospin doublet, impossibly composed of even more fundamental constituents, dubbed

the quarks. The interaction of these quarks with one another manifested itself in the

observable properties that distinguished the two nucleons and suddenly, the nucle-

ons themselves were not unique configurations of these pointlike constituents, but

merely two parts of a veritable menagerie of baryons. Neither was that the end of

the possibilities arising from quark interactions another class of particles, called the

mesons, were too the product of interactions between pairs of quarks. Yet for all of

the discoveries made and attributed to the quarks over the last half-century, there

is almost no concensus explanation that can encapsulate and predict their behavior

within these composite particles. So-called intermediate energy physics attempts to

measure their interactions through nuclear reactions, measuring decay products, en-

ergy levels, and other principal quantum numbers, in an ongoing effort to definitively

describe the structure of these particles protons, neutrons, mesons, etc. (collectively,

the hadrons). They are known to be ’excitable’ that is, they can be induced over
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short time-spans to new configurations, known as resonances, and they are known to

decay through different channels, producing in turn new hadronic or leptonic prod-

ucts, that allow for distinguishing these resonances from ground-state, or relatively

speaking stable configurations of the constituent quarks. One of the most powerful

tools available to physicists in the study of these composite particles are the elec-

tromagnetic form-factors, functions that describe the ‘shape’ of the particle and it’s

resistance to decomposition in reactions.

There exist two tested experimental methods to extract the electromagnetic form-

factors from the nucleons, a method known as Rosenbluth scattering that involves

an elastic (non-destructive) reaction between electrons and the target nucleons. By

measuring the recoil of the proton and the deflection of the electrons, the kinematics

of the experiment allow for the calculation of the measured form-factors. A similar

elastic reaction can also be done using polarized electrons in which the chief indica-

tor of the target nucleon’s form-factor is measured through the polarization of the

recoiling nucleon, transferred to it by the electron. These methods are independently

verified to measure these functions, yet have a surprising disparity when the normal-

ized form-factor ratio (the standard metric of comparison is the ratio of the electric to

the magnetic form-factor) is compared in each case. Whereas the Rosenbluth method

exhibits a fairly constant unity relationship through the range of momentum transfer,

in a polarization-transfer reaction this quantity falls off quickly as the magnitude of

the momentum transfer increases. The incompatibility of these results is unexpected

from and unexplained by the theoretical model, and the attempts to reconcile them

take a phenomenological approach that introduces corrective processes and higher-

order terms in the interaction potential that are fixed by parameters, not necessity

and are often model-dependent.

In order to examine the fundamental differences in the processes and reactions at

the root, one can instead appeal to the derivation of these form-factor extractions from
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the experimental observations. By being careful to avoid making any assumptions to

the equality and correlation of the form-factors measured through different processes,

it is possible to independently define form-factors for each of the reactions in a slightly

more cumbersome, but formally equivalent and indisputably valid, representation of

the nucleon’s shapes in terms of the experimentally detectable kinematics.

This representation of the separated form-factors actually can be shown to corre-

spond directly with a particular set of nucleon states. These states, currently being

explored at the University of Washington and elsewhere [15, 16], indicate that the

nucleons may not have, as previously thought, a spherical shape in all circumstances.

Certain configurations of the spin of the internal quarks can cause a deformation in

the shape of the nucleon. This is a phenomenal result, but taken together with the

form-factor extractions above can be directly extended to the problem of form-factor

measurement. The polarization state of the recoiling nucleon is represented in a basis

of two spin-directions - directions that correspond directly to two of the primary spin-

states examined in the deformation work. This would seem to indicate that when the

experiment is being carried out on a particle in one of these states, its shape (and

thus, its form-factors) is significantly different than its shape in a state such as that

measured by the Rosenbluth cross-section.

With this realization, it becomes trivial to explain the difference in the form-

factors. As predicted by the deformations of the nucleon in the polarization-transfer

reaction, the magnetic form-factor is either extended along its transverse or longitu-

dinal axis, and when the ratio for this experiment is calculated by the same method

as for the Rosenbluth reaction, the analagous quantity (a combination of the state-

specific magnetic form-factor terms and the unaltered electric form-factor) falls off as

momentum transfer increases, just as seen with the experimental results. The error

then, in the current view of form-factor measurement, is not one of experimental

deficiency or systematic inaccuracies as has been proposed, but it is simply an inap-
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propriate interpretation of the results that arises from comparing two fundamentally

different quantities - the spherical (Rosenbluth) form-factors, and the deformed and

non-spherical ones.

This realization not only resolves the issue of incompatible results (by noting that

they are not really incompatible at all, simply incomparable), but it indicates that

the internal spin-state of the nucleon, considered indeterminate by quantum field

theory in the situation where the composite particle is being probed, is accessible

from currently feasible (and indeed common) experimental techniques, by measuring

the independent separated form-factors and examining their correspondance to the

deformation operators.
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Abstract

A new method of interpretation is applied to the results of polarization-transfer

through elastic electron-nucleon scattering that offers an explanation for the noted

experimental inconsistencies of electromagnetic form-factor extraction with those of

the classical Rosenbluth scattering techniques. New research on the position and

momentum-space charge density and magnetic moments of the nucleons indicates

that there may be non-spherical deformations in the nucleon shapes that result from

the alignments of nucleon and constituent quark spins. The application of these re-

sults to Rosenbluth and polarization-transfer scattering cross-sections indicates that,

while Rosenbluth scattering projects spherical form-factors, the polarization-transfer

method is sensitive to these deformations and exhibits a prolate (and thus larger)

magnetic charge distribution that lowers the form-factor ratio from what is observed

in the spherical (Rosenbluth) case, in direct correspondance with the existing body

of experimental data. This interpretation also allows for the possibility of directly

measuring these deformations in the nucleon shapes, and consequently, directly the

alignment of the constituent quark spins with respect to that of the nucleon, quantities

previously thought inaccessible experimentally due to the Wigner-Eckhart theorem

for spin-1
2

particles.



Chapter 1

Introduction

The 1918 discovery of the proton by Rutherford (and Chadwick’s unearthing of

it’s isospin partner the neutron fourteen years later) ignited the world of subatomic

physics; gone were the notions of a fundamental, elementary nucleus and the idea of a

static atomic structure. Rapidly following were the discoveries of particles more fun-

damental than these nucleons and an entire pantheon of particles built up in a similar

way from these newly observed constituent partons. The new picture of the proton

and neutron was not one of indivisible charged balls but of strongly interacting and

dynamic collections of confined quarks. With contributions from Murray-Gell Mann,

Kazuhiko Nishijima, George Zweig and others, a model of ‘strong’ particles that fit

into the SU(3) extension of the existing Pauli-Dirac mathematics for electroweak in-

teractions was developed that gave predictive rise to the classes of hadrons observed

in nature: 3-quark fermionic particles, or baryons, and 2-quark bosonic particles,

called mesons.

With this new picture, however, the descriptions of these particles required a new

understanding of their interactions, given in terms of these quarks and their unfamil-

iar means of combination. This is the heart of the field of quantum chromodynamics,

the formalism of these particles, and it is one of the frontiers of modern physics. The
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classification of hadronic matter and the elucidation of a sub-hadronic description of

matter aims for the resolution of the missing resonance problem, the η − η′ incon-

sistency, a description of the decuplet (octet) baryon (meson) states and a host of

other issues that are not well understood within the quark structures predicted by

the Standard Model.

One way that these structures are analyzed is through form-factors, functions that

describe the resiliency against decomposition of a particle with internal structure (see

Chapter 2). The extraction of these form-factors for the proton and the neutron from

elastic electron scattering is a crucial tool in the study of sub-nuclear structures, and

the Sachs electric and magnetic form-factors of the nucleons are well-described in such

a process by the Rosenbluth cross-section [18] (see section 2.2). These form-factors

can be regarded as the ‘shape’ of the nucleon in the sense that a Fourier transforma-

tion links the electric form-factor to the charge-density distribution and the magnetic

form-factor to the anomalous magnetization, or the density distribution of the mag-

netic moment, of the nucleon. In the formalism of quantum electrodynamics, this

scattering process is thought to be well understoond by the mechanisms of virtual

photon exchange, yet when applied to a polarization-transfer measurement (see sec-

tion 2.3) there is a marked deviation from the form-factors exhibited in Rosenbluth

scattering that grows with Q2 [10]. This discrepancy is clearly the result of a mecha-

nism beyond the experimental or systematic errors of the scattering processes, which

have been probed and measured thoroughly at high momentum-transfers [11, 12, 9]

in an attempt to explain the divergence of the form-factors as observed. This exper-

imental result leads, at first blush, to one of two possible explanations: either the

(previously assumed) interactions are not accurately describing the cross-section of

the scattering processes, or the form-factors are not described by the cross-sections

as previously thought.

The currently fashionable theoretical approach to resolving these issues involves
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measuring the contributions of additional processes and higher-order interactions be-

tween the electron and the target nucleon that offer significant corrections to the

Rosenbluth cross-section [5, 2]. These corrections are highly model-dependent, but in

general they bring the form-factor ratios of the Rosenbluth process closer in line with

the lower polarization-transfer measurements at higher momentum transfers. Cur-

rent research is underway to measure these corrections by the analysis of assymetries

between the cross-sections of electron-nucleon scattering and positron-nucleon scat-

tering reactions with experiments proposed at Jefferson National Laboratory and at

the Siberian VEPP-III storage ring facility [4], but there exists currently no defini-

tive application of these corrections or a canonical theoretical motivation of their

significance.

This thesis endeavors to motivate an alternate interpretation of the differences be-

tween form-factor observables in Rosenbluth scattering and in polarization-transfer

measurements through first principles with minimal assumptions and without ap-

pealing to contrived externalities such as model-dependent side-effects or parameter-

driven corrections. A discussion on the form-factors themselves and their properties

and extractions, as well as a discussion of the experimental techniques for measuring

them will be used to set the background for this approach in Chapter 2. Chapter 3

then will summarize the salient points of exciting new research being done by Drs.

Gerald Miller (University of Washington) and Alexander Kvinikhidze (The Mathe-

matical Institute of the Georgian Academy of Sciences) [15, 16] that indicates non-

spherical properties of the nucleons under certain observational conditions. These

observations and findings are calculated using a relativistic light-front frame, the me-

chanics of which can be found detailed in the back-matter (Appendix B). Using the

background established in the first parts of this paper, Chapter 4 will attempt to

bring the two fundamental ideas together and, using new data from polarization-

transfer scattering experiments, illustrate the synthesis of the new interpretation of
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form-factor results that points to an intuitive view of the nucleon and allows for the

possibility of extracting further information previously thought unavailable to experi-

mental observers, some of which will be discussed in the concluding remarks (Chapter

5) on significant possibilities that can be built on the simplified interpretation pre-

sented herein.
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Chapter 2

Electromagnetic Form-Factors

Quantum mechanics predicts that a Dirac (point-like) particle of spin-1
2

will exhibit

a magnetic moment with a g-factor of 2, but experimental observations in the early

20th century showed a proton magnetic moment with g = 5.586. This provided the

first clear evidence that the proton is not, in fact, a Dirac particle and thus that it has

a definite substructure, particularly an electromagnetic one. The first explorations

of this structure confirmed that descriptions of this structure, called form-factors,

were dependent only on Q2, or the square of the transferred four-momentum in the

scattering process[7]. These form-factors, F1 and F2, are called the Dirac and Pauli

form-factors, respectively, and they can be re-written to define form-factors which

isolate the electric and the magnetic properties, as follows:

GE = F1 − τκF2 (2.1a)

GM = F1 + κF2 (2.1b)

These are the Sachs form factors, and they will be used (unless explicitly noted

otherwise) for the remainder of this thesis in the discussion of form-factors. The

subscripts E and M denote electric and magnetic components, respectively. τ is the

kinematic parameter, equal to Q2
/4M for a nucleon mass of M , and κ is the anomalous
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magnetic moment of the nucleon1, that is, the deviation of the magnetic moment from

the ideal predicted for a Dirac particle [17]. The electric and magnetic Sachs form-

factors may be extracted directly from experimental cross-sections; see the following

sections 2.2 and 2.3 for more details on those calculations.

The Sachs form factors are important descriptions of the nucleon shapes not only

because of their relevance to the elastic scattering cross-sections, but because they are

also directly related to the electric charge distribution and the magnetization functions

(for GE and GM respectively) via the Fourier transformation in the non-relativistic

limit. This makes an accurate measurement of these form-factors paramount in study-

ing the spin structure of the nucleon, in addition to the development of QCD formal-

ism and various quark models of the nucleonic interactions and hadronic degrees of

freedom.

Both the electric and the magnetic form factor follow the same general shape, that

of a dipole (2.2),

GD =

[
1 +

Q2

0.71

]−2

(2.2)

which the form factors are typically normalized to, with the magnetic form factor also

typically shown normalized to the anomalous magnetic moment. The limit cases as

Q2 → 0 for these functions have been both experimentally and theoretically shown

to correspond directly to the nucleon charge (for GE) and the magnetic moment (for

GM), respectively. The following sections 2.1 and 2.2 concern the formulation of these

form-factors as coefficients to the scattering cross-section.

2.1 Elastic scattering

A coherent elastic scattering process is one in which the quantum numbers of the

target/scattering particles are unmodified, and there is no internal energy added to

1Where κ is µp

µN
= 2.79 for the proton, and µn

µN
= −1.91 for the neutron. µN is the nuclear

magneton.
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the system, i.e. as in a resonance or excitation state. In the case of an electron

scattering on a point-particle, the cross-section is calculated as follows using the

Feynman diagram technique. Summing the interaction operators at the vertices (both

�
N

e−

N

e−

γ

Figure 2.1: Feynman diagram of an electron scattering off of a point-particle N.

√
α, α the electromagnetic coupling constant), the scattering process represented (an

electron with initial energy E being scattered at an angle of θ off of a point-like

nucleon target of charge Ze), one obtains the Rutherford cross-section (2.3).

dσ

dΩ
=
Z2α2(h̄c)2

4E2 sin4 θ
2

(2.3)

This is correct in the relativistic limit up to incorporating spin-effects of the electron

or the target, and neglecting the recoil effect on the target, i.e. the momenta of the

incoming and outgoing electron are considered to be the same, and likewise with the

target particle. This is adapted from the nuclear scattering technique used by Ruther-

ford by replacing the nuclear form-factor |F (q)|2 with a δ-function to approximate a

structureless point-particle [17].

In order to incorporate the spin effects, relevant in relativistic conditions, an

additional term is required to ensure conservation of helicity (in the limit β → 1).

This leads to the Mott cross-section (2.4), and it is correct in the relativistic limit for

elastic scattering without recoil effects in the target [17].

(
dσ

dΩ

)∗
Mott

=

(
dσ

dΩ

)
Rutherford

[
1− β sin2 θ

2

]
(2.4)

Note that the Mott cross-section takes into account only the non-spin-flip reaction. If
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the target particle has spin, total angular momentum can be conserved without the

helicity of the electron necessarily being conserved, i.e. in the case of backscattering

through 180 deg [17].

This cross-section gets closer to accurately describing the process of interest here

by replacing a nucleus with a nucleon as the target particle and allowing the reaction

to couple to a spin flip, but another major assumption needs to be removed from

the formulation: that of no recoil to the target particle. The mass of the nucleon

(approx. 940MeV/c2) is of the same order of the typical electron energies required

in an elastic scattering, so there is a scaling factor of the electron energies required

to take into account the energy transfer (no longer negligible) to the nucleon. This

also, since we are firmly in the relativistic case, requires use of the four-momentum

transfer Q2 rather than the three-momentum transfer q [17].

(
dσ

dΩ

)
Mott

=

(
dσ

dΩ

)∗
Mott

E ′

E

[
1 + 2τ tan2 θ

2

]
(2.5)

The additional term here arises from the interactions of the nucleon magnetic moment

with the field of the electron current. This term exhibits the spin-flip component of the

interaction, and becomes more apparent when expressed in terms of the Sachs form-

factors later. τ is the kinematic parameter, equal to Q2

4M2 , introduced to normalize

the magnitude of the interaction to that of the electron deflection, obviously linear

in Q2. This quantity’s appearance in the matrix element will come up in normalizing

all of the magnetic interactions in the following extension of the cross-sections.

2.2 Rosenbluth method

As the first electron-nucleon scattering experiments began to take place, discrep-

ancies were noted between the expected cross-section (modified Mott, (2.5) above),

and that observed from the measurements. It was this result that led to the under-
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N

e−

N

e−

γ

Figure 2.2: Feynman diagram of an electron scattering off of a compound nucleon
target.

standing of the proton as a compound particle (Figure 2.2, and the modification of the

Mott scattering cross-section to account for a spin-flip interaction with the nucleon.

This modification results in the Rosenbluth equation (2.6) as a cross-section for the

electron-nucleon scattering process [18].

dσ

dΩ
=

(
dσ

dΩ

)
Mott

[
G2
E(Q2) + τG2

M

1 + τ
+ 2τG2

M(Q2) tan2 θ

2

]
(2.6)

For brevity, the virtual photon polarization parameter ε = [1 + 2(1 + τ) tan2 θ
2
]−1 is

introduced.

dσ

dΩ
=

(
dσ

dΩ

)
Mott

1

1 + τ

[
G2
E(Q2) +

τ

ε
G2
M(Q2)

]
(2.7)

Equations (2.6) and (2.7) are the key to this method of determining nucleon form-

factors. For reasons which will become apparent in Chapter 4, the independently

resolved values for the Sachs form-factors here will be denoted GR
E and GR

M when

referring to the Rosenbluth separation method. The Mott cross-section is fixed by

the kinematics, as are τ and θ, while the form-factors are dependent only on Q2,

so the extraction is done experimentally by varying the beam energy E and the

scattering angle of the outgoing electron θ while keeping Q2 constant. The data set

over this range of kinematic values is then normalized to the Mott cross-section given

in equation 2.5, eliminating the kinematic terms and yielding a linear function that is

trivially seperated to give GR
E and GR

M . Repeating this process over a range of values

for Q2 gives the dependence of the form-factors, both of which, as mentioned above,

are approximated well by the dipole (2.2).
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Figure 2.3: Normalized ratio of extracted form-factor values in the Rosenbluth process
against Q2 (in GeV2).

Repeated execution of these experiments through a wide range of Q2 values [8, 9]

have shown that the ratio κGR
E/G

R
M is relatively constant at unity in Q2, as shown

below in Fig. 2.2.

2.3 Polarization transfer method

Polarization transfer experiments are likewise elastic processes, done by scattering

longitudinally polarized electrons off unpolarized protons (Fig. 2.3). The recoiling

proton is measured and will subsequently exhibit polarization in both the transverse

and longitudinal directions with respect to the momentum directon of the proton

in the scattering plane (all of the out-of-plane components are zero) ‘received’ from

the electron. As noted above, this method exhibits a systematic decrease of the

normalized electric to magnetic form factor ratio with increasing momentum transfer

Q2.

The polarization components in the scattering plane are given by the following

11
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Figure 2.4: Feynman diagram of polarization transfer method of electron-nucleon
scattering.

relations[1]:

I0Pt = −2
√
τ(1 + τ)GEGM tan

θ

2
(2.8a)

I0Pl =
1

M
(E + E ′)

√
τ(1 + τ)G2

M tan2 θ

2
(2.8b)

I0 is the averaged form-factor term in the Rosenbluth cross-section, GR
E

2
+ τ

ε
GR
M

2
.

Equations 2.8 are trivially combined to get an expression for the ratio of form-factors

(2.9), compared in Figure 2.3 with the same ratio as calculated from the cross-section

in Rosenbluth scattering (Figure 2.2).

GE

GM

= −Pt
Pl

E + E ′

2M
tan

θ

2
(2.9)

Obtaining this ratio experimentally is done differently than in Rosenbluth scattering,

in that the form-factors are not independently observed2, but measured as a ratio.

The polarization components of the recoiling nucleon target are measured with

the use of, i.e, a focal plane polarimeter, simultaneously, as a function of the angular

distribution of scattered particles in the polarimeter. The actual observable here is

hAcP∗, where h is the polarization of the electron beam, and Ac is the analysing

power of the polarimeter [10]. In the ratio calculation then, of Pt/Pl, neither the

beam polarization nor the polarimeter’s analyzing power needs to be known in order

to calculate the form factor ratio (2.9).

2This is to minimize systematic uncertainties and the requirements of experimental setups, not
for any intrinsic prohibition of the measurement method. As noted in Chapter 4, measurements of
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Figure 2.5: Plot of the experimentally observed ratios µNGE/GM against Q2 (in
GeV2) for Rosenbluth and polarization transfer extractions.

2.4 Higher-order processes

The current research surrounding these two methods of nucleon form factor ex-

traction has centered around the inclusion of additional processes, beyond the one-

photon-exchange electromagnetic interaction assumed from the beginning in elastic

scattering. While these higher-order or secondary interaction processes are typically

negligible in their contribution to experimental cross-sections, there is hope that their

effect on the Rosenbluth cross-section is significant enough to make up for the dis-

crepancies in the high-Q2 regime.

Studies of the higher-order two-photon exchange process have indicated that it

is largely an angular-dependent contribution to the scattering cross-section, which

makes it of particular interest in the Rosenbluth extraction in which the scattering

angle is one of the key degrees of freedom for the form factor ratio at a given Q2

measurement. These absolute corrections are not very strongly dependent on Q2,

these quantities are rare, but by no means impossible, or even prohibitively difficult.

13



and so as the momentum transfer increases, the Rosenbluth cross-section is consid-

erably reduced by the two-photon exchange process, as it is significant in extractions

of the electric Sachs form factor, GE. The process exhibits dependence on the virtual

photon polarization parameter ε, roughly linear, in addition to the weakly increas-

ing linear Q2 dependence, which also supports the concept of a significant reduction

in GE for Rosenbluth separations (due to the decreasing dependence on GE for the

high-Q2 cross-section). The polarization transfer measurements are not significantly

adjusted by these higher-order corrections because the measurement of the polariza-

tion components and the cross-section are identically influenced by the process (both

are sensitive only to the ratio GE GM as discussed above) and thus cancel [2].

The approaches here remain model-dependent and phenomenological at this point,

but experimental techniques have been proposed to definitively measure the magni-

tude of contributions from two-photon exchange processes, most promisingly through

comparison of the Rosenbluth cross-sections of e−p and e+p scattering. The two-

photon exchange amplitudes are charge-invariant for the scattering particle, where

the wave function amplitudes are not, directly exhibiting an assymetry in the in-

terference term of the interaction operator that should directly correspond to the

two-photon amplitude [3].

An analysis of the global form factor data set has been performed [4] that applies a

formal definition of the two-photon exchange operator [5] to existing cross-section data

for Rosenbluth separation experiments at values of Q2 up to 6 GeV2. The extracted

form factors from this data have been compared with the form factor ratios obtained

from polarization transfer over a similar Q2 range, where the results were found to

more closely correspond, though with the aid of a model-adjustable parametrization

that exhibited a significantly increasing error in the Rosenbluth values with Q2.
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Chapter 3

Nucleon Deformations

It is greatly material to the conclusions of the thesis to discuss current research on

the deformed shapes of the nucleons, though an in-depth development of the theory

is beyond this scope, and is left to the referenced works [15, 16, 14]. Qualitatively

the result as detailed below indicates non-spherical shapes of the nucleons, dictated

by the alignment between the spin of the proton and that of its constituent quarks,

with well-defined deformations in the cases of (anti-)parallel and perpendicular spin

axes. The formalism here is carried out in the light-front frame, the details of which

are explored in Appendix B.

3.1 Spin-dependent density function

For a simple (proton-neutron) nuclear wave function with a central (radially sym-

metric) potential, the charge density ρ(r) is the expectation of the density operator

centered on the proton, δ(r − rp). If the proton is then constrained to have a spin

in the direction of n̂, the density operator must be modified by that spin-projection,

yielding the following charge density expression:

ρ(r, n̂) =

〈
ψ

∣∣∣∣δ(r− rp)
1 + σ · n̂

2

∣∣∣∣ψ〉 (3.1)
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This technique has been used to witness deformations in the charge density of, i.e.

the hydrogen atom for a spin-polarized nucleus. Applying similar techniques to the

wave functions for an individual nucleon then, should make apparent any deformation

present for particular angular momentum. Modifying (3.1) for the nucleon form-factor

and the (relativistic) spin-projection in terms of the Dirac matrices, and introducing

the quark charge operator Q̂, the fully normalized calculation of the charge-density

operator in momentum-space is as follows[15]:

ρ̂(K, n̂) =
1

(2π)3

∫
eıK·rψ(r)

Q̂

e
(γ0 + γ · n̂γ5)ψ(0)d3x (3.2)

The charge density is then just the expectation of that operator for a quark (in the

nucleon described by ψ) with momentum K and spin in the direction n̂.

The fascinating result of this work is seen in the relativistic component of the

Dirac spinors, where for ‖ K ‖� m, the charge density calculated is almost exactly

spherical, but as ‖ K ‖ increases, nonspherical terms begin to dominate (see Figure

3.1); when the quark spin is parallel to the nucleon spin, the charge density exhibits a

cos2 θ form, leading to a prolate shape pinched around the center (imagine a peanut),

and anti-parallel spin alignment is governed by sin2 θ, and appears toroidal. Further

interesting configurations not of particular interest here come from i.e, perpendicular

cases, which introduce an azimuthal angle φ dependence, and so on.

3.2 Form-factor extraction

Given the spin-dependent density function defined above, and given a spin-independent

wave-function Ψ of the nucleon that includes the Dirac spinors of its constituent

quarks and standard quantum number amplitudes, the form factors are (as classi-

cally) calculated from the nucleon interaction current J. In the light-front formalism,

the operator can be reduced to its longitudinal component, J+, and the Pauli and
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Figure 3.1: The nucleon shapes in the spherical (average) case, and those of the
quark/nucleon spins parallel and anti-parallel.

Dirac form-factors are obtained as follows, isolating the spin-flip matrix element:

F1(Q
2) =

1

P+

〈
N, ↑

∣∣J+
∣∣N, ↑〉 (3.3a)

QκF2(Q
2) =

−2MN

2P+

〈
N, ↑

∣∣J+
∣∣N, ↓〉 (3.3b)

The Sachs form factors are trivially calculated from these relations, using (2.1).

The current operator needs to be defined to include the interaction and the transition

matrix elements from initial to final states of the nucleon wave function. Since the

calculation is fully relativistic and Ψ is a fermion (antisymmetric) wave function, the

effect of the virtual photon’s momentum transfer can be taken to act on a single

quark, which, as will be seen below, dictates the spin of the nucleon. The antisym-

metry ensures that a frame exists (the light-front frame, for one), where the total

angular momentum contributed by the other two quarks cancels to zero, simplifying

17



the calculation1.

This definition of the wave function and the current operator completely fixes the

form factors by (3.3), and is dependent on the Dirac spinors of the constituent quarks,

whose lower components contain the angular momentum terms that in turn affect the

determination of the spin-dependent charge density function defined in section 3.1.

This is a powerful tool that allows the interaction operator to determine both the

shapes of the nucleon and the electromagnetic form factors, as further discussed in

Chapter 4.

1Because of the quark’s spinor structure, the magnitude of the spin is all that contributes: the
nucleon helicity is not conserved by the transition as a whole (the F1 matrix element does conserve
helicity, that of F2 does not)[6].
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Chapter 4

Experimental Interpretation

Obviously, the results discussed previously are missing an important piece of un-

derstanding that links the two experimental methods and their contradictory mea-

surements together in a unified phenomenological framework. Preliminary results

from models of two-photon exchange contributions look to alleviate some of the dif-

ficulties in reconciling these two, but these calculations lack an ab initio justification

for their impact, and they are highly dependent on data-tuned parameters to fit the

experimental data. Even under the most successful of conditions, the corrections

applied are unable to account for the entirety of the observed deviations at high Q2

values. These are all signs of an effort to patch together an incorrect understanding

of the underlying model, and appealing to the basics of the system indicates that

there may be another way to interpret the results that can be directly and intuitively

motivated.

Careful attention to the derivations in sections 2.2 and 2.3 may have raised con-

cern over the careless use of the Sachs form-factors as defined for both experimental

setups. The reason for this is historical, but the implicit assumption is made when

separating the form-factors that they are equivalent under the circumstances of each

experiment. Given the results concerning nucleon shapes introduced in Chapter 3,
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and the discovery that non-spherical deformations are directly linked to the spins of

the constituent quarks, it seems reasonable to attempt to construct a model that does

not rely on the assumption that the electric and magnetic distributions of the nucleon

are unaffected by these properties as well.

Returning to the interaction of the polarization transfer measurements, restricting

the events of interest to elastic scattering events, both angular momentum and parity

must be conserved. This limits the interaction to one mediated by a virtual photon

of even parity that also couples to the spin-1/2 ground state of the nucleon. This

disallows the electric dipole (E1) contribution, which has negative parity, and the

electric quadrupole (E2) contribution, which has angular momentum l = 2 and thus

couples only to the spin-3
2

or spin-5
2

final state baryon. The Coulomb monopole

transition (C0) has even parity, and no angular momentum contribution, so can couple

to the nucleon with no spin flip, while the magnetic dipole (M1) has even parity and

an angular momentum of 1, corresponding to a spin-flip in the final state, so these

are the interactions allowed by the scattering process.

Taking the relationship for polarization observables in PT-measurements from

(2.8), they are now written below in such a way that no longer assumes that the

form-factors are equivalent. Used is the convention introduced in the discussion of

Rosenbluth scattering of superscripting the form-factor with an indicator of which case

the function is applicable to; R,l or, t for the Rosenbluth (unpolarized), longitudinally

polarized, or transversely polarized cases, respectively.

I0Pt = −2
√
τ(1 + τ)Gt

EG
t
M tan

θ

2
(4.1a)

I0Pl =
1

M
(E + E ′)

√
τ(1 + τ)Gl

M

2
tan2 θ

2
(4.1b)

The I0 definition does not need to be modified; as it is the average measurement of

the nucleon shape as scaled by the cross-section and not subject to the particular
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deformations in the polarization-transfer cases. This average of all nucleon shapes is

simply spherical, which is the case exhibited by the Rosenbluth measurement, which

then defines I0 for a given Q2.

I0 = GR
E

2
+
τ

ε
GR
M

2
(4.2)

Following the same derivation process as done in section 2.3, but taking care to keep

the form-factors independent from one another, the following relationship is obtained:

Gt
EG

t
M

Gl
M

2 =
−Pt
Pl

(E + E ′)

2M
tan

θ

2
(4.3)

This quantity is exactly equivalent to what was previously assumed to be GE/GM

(2.9). The plot shown in Figure 2.3 is, in this derivation, interesting for the sake of

comparison, but should not be seen as an indictment of the experimental methods

used: the datasets plotted are of different observable quantities which would not be

expected from the model to be equal.

Further refining the separation of the form factors according to the theory of spin-

dependent deformations, several other relationships can be gleaned from the model.

The sensitivity of the polarization-transfer measurements to the spin of the internal

quarks is predicated on the concept of alignment, enforced on the quark (and the

proton as a whole) by the polarization of the virtual photon. The Wigner-Eckhart

theorem prohibits measurement of a quadrupole magnetic moment contributions from

the quarks: this still holds, but because of the spin-flip interaction operator for the M1

multipole transition, the proton is forced to be spin-aligned along the axis of momen-

tum transfer. Note as well, however, that this glimpse of knowledge is only possible

for the M1 photon exchange. In the other allowed process, the C0 transition, there

is no spin-flip (and no polarization-transfer). Since it is the spin-flip (an inherently

magnetic transition) that allows knowledge of the alignment, there is no deformation
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Q2 Pt Pl Gt
M Gl

M GR
M

0.8 GeV2 -0.259 0.398 0.8900 1.4218 1.021
1.3 GeV2 -0.214 0.437 0.8537 1.6114 1.057

Table 4.1: Separated form factor values from experimental data.

effect observed in the electric form factor, regardless of internal alignment.

This meshes with the understanding of the deformations as outlined in Chapter 3

as dependent on the angular momentum contributions of the nucleon wave-function.

Existing experimental data to support or verify such an interpretation is difficult to

come by, in no small part due to the method for most polarization transfer experi-

ments discussed in Section 2.3, because by its nature the form factors are typically

not measured independently. This poses a difficulty for the calculation of separated

magnetic form-factors independently as in Appendix A and (4.1), which do require

independent measurements of the in-plane polarization components Pt and Pl. The

observables measured in many polarization transfer experiments are PtAch and PlAch,

where Ac is the analyzing power of the polarimeter and h is the helicity of the elec-

tron beam. Since these are measured independently, and in order to extract the form

factor ratio only the ratio of the polarization components must be measured [10], the

form-factor extraction is independent of the electron beam helicity and the polarime-

ter analyzing power [19]. With this knowledge, each of the polarization components

can be known explicitly, and using (4.1) the independent form factors in both the

transverse and longitudinal alignment cases can be found. Preliminary data points

with all of the required information have been obtained from the E03-104 experimen-

tal run at Jefferson Laboratory [19] for two Q2 values, as shown in Table 4 with the

calculated form factor values below. The data for GR
M is taken at the equivalent Q2

from a global experimental data set [4].

Calculating the ratio from (4.3), the points lie on the same curve as the canonical

GE/GM calculated from polarization transfer, which serves as a good check of the
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interpretation’s mathematical consistency. Also, as expected qualitatively from the

nucleon deformation results in momentum space, [15], in the transverse polarization

case, the magnetization density is contracted (see Figure 3.1, center), while for the

longitudinal component it is extended (Figure 3.1, bottom), their values bracketing

the spherical average calculated from Rosenbluth separation (Figure 3.1, top).
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Chapter 5

Conclusions

Looking forward, the resulting intepretation presented here opens up significant

opportunities for future understandings of the quark model and experimental probes

of the structure of the nucleon. The interpretation offers an explanation for the

observed discrepancies of the form factor ratios obtained from Rosenbluth separa-

tion and from polarization transfer measurements by removing the assumption that

they be equivalent, neatly supported by current research on how the electric charge

and magnetization densities (and by extension, the Sachs electric and magnetic form

factors) are measured.

The preceding development of a form factor theory is carried out from basic prin-

ciples without requiring any assumptions or a model-dependent ansatz to explain its

qualitative interpretations. Future research along these lines is naturally drawn to

either of two paths: further analysis of a broader experimental data set for polar-

ization transfer scattering, subject to the availability of the independently measured

polarization components as discussed above, and (currently investigated) attempts to

extract a predicted function for the form factors (and the equivalent ratios) from the

theory of spin-dependent nucleon deformations that can be experimentally verified

with current and future measurements.
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This also presents an opportunity for further understanding the spin structure of

the nucleons by allowing (through measurement of the ratio in Eq. 4.3) experimental

observation of the spin axis of the constituent quarks in elastic scattering without

violating or requiring a spectroscopic quadrupole moment of the nucleon. The sen-

sitivity of the polarization transfer measurements to the internal quark spins allows

measurements to be taken that can exhibit these deformations, providing a possible

experimental verification for the spin-dependent theory detailed in Chapter 3.
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Appendix A

Separation of magnetic form

factors

Let the cross section average I0 be strictly determined (at a given value of Q2) by

the Rosenbluth interaction, since it is the average.

I0 = GR
E(Q2)+ τ

ε
GR
M(Q2)2

Using (2.8), specified as in (4.1), we can specify the polarization components (if

measured independently) in terms of the relevant form factors. As before, the R

superscript is dropped from the electric form factor, as GE is unaffected by the de-

formations and is not sensitive to the spin-flip interaction.

Pt =
−2
√
τ(1 + τ)GEG

t
M tan θ

2

GR
E(Q2)+ τ

ε
GR
M(Q2)2

Pt =
−2
√
τ(1 + τ)GEG

t
M tan θ

2

GR
M

2

((
GE

GR
M

)2

+ τ
ε

)

Pt =
Gt
M

GR
M

GE

GR
M

−2
√
τ(1 + τ) tan θ

2(
GE

GR
M

)2

+ τ
ε
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And similarly for the longitudinal recoil polarization component:

Pl =
(E + E ′)

√
τ(1 + τ)Gl

M
2

tan2 θ
2

M
(
G2
E + τ

ε
GR
M

2
)

Pl =

(
Gl
M

GR
M

)2
(E + E ′)

√
τ(1 + τ) tan2 θ

2

M
(
GE

GR
M

)2

+ τ
ε

With the exception of being scaled by a ratio of the relevant magnetic form factor to

the average, both of these relations are dependent only on the ratio of electric to mag-

netic form factors obtained in the Rosenbluth (average) case. The ratio-dependent

part of the equation is identical to that found in the canonical polarization transfer

calculations, and so we trivially obtain the analagous ratio by dividing the polariza-

tion components as follows.

Pt
Pl

=
Gt
M

GR
M

(
GR
M

Gt
M

)
GE

GR
M

−2M

(E + E ′) tan2 θ
2

Pt
Pl

=
GEG

t
M

Gl
M

2

−2M

(E + E ′) tan2 θ
2

This leads to the form factor ratio cited in (4.3), which is the same observable in

polarization-transfer reactions that is canonically called “GE/GM” but is clearly seen

here to differ from the spherical average exhibited in Rosenbluth scattering (GE/G
R
M

in the notation of this thesis).

GEG
t
M

Gl
M

2 =
−Pt
Pl

E + E ′

2M
tan

θ

2
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Appendix B

Light-front formalism

This is intended only as a quick reference for the conventions of the light-front

formalism, sufficient for its brief use in describing the spin-dependent nucleon density

operator (3.2) and the nucleon currents and wave-functions (3.3).

The light-front vector is defined as follows,

v ≡



v+

v1

v2

v−


where v± ≡ v0 ± v3, where vi are the standard four-vector components. Also defined

for convenience is p⊥ = (v1, v2), the perpendicular component of the vector [13].

The Dirac spinors can also be written in this coordinate-system, and are crucial to

the development of the nucleon wave functions referred to in Chapter 3 [15]. Defined

in the infinite-momentum frame, the spinors for a spin-1/2 particle with momentum

p are as follows:

u(p, σ) =
6 p+m√

2m(m+ p0)
u(0, σ)

u(0, ↑) = (1, 0, 0, 0)
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u(0, ↓) = (0, 1, 1, 1)

Following the conventions of the light-front coordinates, these translate to the follow-

ing expressions for spinors (only the spin-1/2 cases of up and down are relevant to

this work, so are mentioned here):

uLC(p, ↑) =
1

2
√
mp+



p+ +m

p1 + ıp2

p+ −m

p1 + ıp2



uLC(p, ↓) =
1

2
√
mp+



−p1 + ıp2

p+ +m

p1 − ıp2

−p1 +m


For further information on these derivations and the relationship between light-front

and infinite-momentum frame coordinates, or their application to the description of

the nucleon wave functions, consult the references [13, 20, 15, 16, 14].
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