Into. To Lattice QCD

Haiyun Lu

Outline

- Introduction to QCD and path integral
- Lattice, scalar field
- Gauge field
- Lattice fermion
- Quenched approximation
- Some results

QCD

- Quantum field theory of strong interaction
- Color field group SU(3)
- Different from QED because of gluon-gluon interactions
- At high energies:
- small coupling constant
- perturbation theory can apply
- At low energies:
- large coupling constant
- perturbation theory does not apply

QCD Lagrangian

$$
L_{\mathrm{QCD}}=-\frac{1}{4} G_{a}^{\mu v} G_{\mu \nu}^{a}+\sum_{f} q_{f}\left[i \gamma^{\mu} D_{\mu}-m_{f}\right] q_{f}
$$

with the gluon field strength tensor

$$
G_{a}^{\mu \nu}=\partial^{\mu} A_{a}^{v}-\partial^{\nu} A_{a}^{\mu}+g f_{a}^{b c} A_{b}^{\mu} A_{c}^{v}
$$

and the gauge covariant derivative

$$
D^{\mu}=\partial^{\mu}-i \frac{g}{2} A_{a}^{\mu} \lambda^{a}
$$

where A_{i}^{u} is the gluon field, g is the strong coupling constant and f denotes the quark flavor. Looks very similar to QED, except for the last term in the second equation.

Path Integral

- Expectation value of an observable

$$
\begin{aligned}
& \langle O\rangle=\frac{1}{Z} \int d \psi d \bar{\psi} d A O e^{i S} \\
& Z=\int d \psi d \bar{\psi} d A e^{i S} \\
& \boldsymbol{S}=\int \boldsymbol{\infty} L
\end{aligned}
$$

Perturbation Theory

- Calculate Feynman diagrams.
- Stop at certain order.
- Order corresponds to number of vertices.
- Proportional to coupling constant, only applicable for small coupling constant.

Intrinsic QCD Scale

- Running coupling constant.
- Intrinsic QCD scalel cos in the order of 1 GeV .
- Scale below which the coupling constant becomes so large that standard perturbation theory no longer applies.
- Many unresolved question about low-energy QCD.
- This is where Lattice QCD comes in!

R. Timmermans, D. Bettoni and K. Peters, "Strong interaction studies with antiprotons"

Lattice QCD

- Proposed by Wilson, 1974.
- Nonperturbative low-energy solution of QCD.
- E.O.M. discretized on 4d Euclidean space-time lattice.
- Quarks and gluons can only exist on lattice points and travel over connection lines.
- Solved by large scale numerical simulations on supercomputers.

Lattice

$$
\begin{aligned}
& x_{0}=-i x_{4} \\
& S_{E}=i S_{M}
\end{aligned}
$$

- From continuum to discretized lattice:

$$
\int d^{4} x \rightarrow a^{4} \sum_{n}
$$

- n four-vector that labels the lattice site, a lattice constant
- Check, take an appropriate continuum limit $(a \rightarrow 0)$ to get back the continuum theory.

Scalar Fields on a lattice

Scalar field lives on a lattice site

$$
\begin{aligned}
\phi(x) \rightarrow \phi(n a) & \\
& n=\left(n_{1}, n_{2}, \cdots, n_{D}\right)
\end{aligned}
$$

Derivative

$$
\begin{aligned}
& \partial_{\mu} \phi(x) \rightarrow \\
& \frac{\phi((n+\hat{\mu}) a)-\phi((n-\hat{\mu}) a)}{2 a}
\end{aligned}
$$

Dimensionless field

$$
\phi_{L}(n)=a \phi(n a)
$$

Scalar field action

- Scalar field $\Phi(x)$, action of continuum field theory in Euclidean space:
$S(\Phi)=\int d^{4} x\left[\frac{1}{2}\left(\partial_{\mu} \Phi\right)^{2}+\frac{1}{2} m^{2} \Phi^{2}+\frac{\lambda}{4} \Phi^{4}\right]$
- Discretize to a lattice: $\int d^{4} x \rightarrow a^{4} \sum$
$\Phi(x) \rightarrow \Phi_{n}$
$\partial_{\mu} \Phi(x) \rightarrow \frac{1}{a}\left(\Phi_{n+\hat{\mu}}-\Phi_{n}\right)$
- Result:
$S(\Phi)=\sum_{n}\left\{\frac{a^{2}}{2} \sum_{\mu=1}^{4}\left(\Phi_{n+\hat{\mu}}-\Phi_{n}\right)^{2}+a^{4}\left(\frac{m^{2}}{2} \Phi_{n}^{2}+\frac{1}{4} \Phi_{n}^{4}\right)\right\}$

Expectation value calculation

- Feynman path integral formalism
- Expectation value of an operator
$\langle 0| O\left(\Phi_{n_{1}}, \Phi_{n_{2}}, \ldots, \Phi_{n_{l}}\right)|0\rangle=\frac{1}{Z} \int \prod_{n}\left[d \Phi_{n}\right] O\left(\Phi_{n_{1}}, \Phi_{n_{2}}, \ldots, \Phi_{n_{l}}\right) e^{-S(\Phi)}$
where
$Z=\int \prod_{n}\left[d \Phi_{n}\right] e^{-S(\Phi)}$
- Rescale fields: $\Phi_{n}^{\prime}=\sqrt{\lambda} \Phi_{n}$
- Lattice action becomes: $S(\Phi)=\frac{1}{\lambda} S^{\prime}\left(\Phi^{\prime}\right)$

Statistical Mechanics

- Rescaled expectation value
$\langle 0| O\left(\Phi_{m_{n}}^{\prime} \Phi_{{ }_{n}}^{\prime} \ldots \Phi_{m_{m}}^{\prime}\right)|0\rangle=\frac{1}{Z} \int \prod_{n}\left[d \Phi_{n}^{\prime}\right] O\left(\Phi_{m}^{\prime} \Phi^{\prime}{ }_{n_{2}} \ldots \Phi^{\prime}{ }_{m}^{\prime}\right) \exp \left\{-\frac{1}{h} S^{\prime}\left(\Phi^{\prime}\right)\right\}$
$Z^{\prime}=\int \prod_{n}\left[d \Phi_{n}^{\prime}\right] \exp \left\{-\frac{1}{\lambda} S^{\prime}\left(\Phi^{\prime}\right)\right\}$
- Recognizable?
- Canonical ensemble
$\frac{1}{\lambda} \rightarrow \beta \equiv \frac{1}{k T}$
- Similar for fermion fields

Statistical Mechanics

The equivalences between a Euclidean field theory and Classical Statistical Mechanics.

Euclidean Field Theory
Action
unit of action h
Feynman weight for amplitudes

$$
e^{-S / h}=e^{-\int C d t / h}
$$

Vacuum to vacuum amplitude

$$
\int \mathcal{D} \phi e^{-S / h}
$$

Vacuum energy
Vacuum expectation value $\langle 0| O|0\rangle$ Time ordered products
Green's functions $\langle 0| T\left[O_{1} \ldots O_{n}\right]|0\rangle$ Mass M
Mass-gap
Mass-less excitations
Regularization: cutoff A
Renormalization: $\Lambda \rightarrow \infty$
Changes in the vacuum

Classical Statistical Mechanics

Hamiltonian
units of energy $\beta=1 / k T$
Boltzmann factor $e^{-\beta H}$

Partition function $\sum_{\text {conf. }} e^{-\beta H}$
Free Energy
Canonical ensemble average $\langle O\rangle$
Ordinary products
Correlation functions $\left\langle\mathcal{O}_{1} \ldots O_{n}\right\rangle$
correlation length $\xi=1 / M$
exponential decrease of correlation functions
spin waves
lattice spacing a
continuum limit $a \rightarrow 0$
phase transitions

Monte Carlo Method

- Method from statistical mechanics to calculate expectation value numerically.
- Generate random distribution.
- Calculate expectation value for this distribution.
- Repeat this process very many times.
- Average over results.
- Results have statistical errors.
- A lot of computational power needed!

Supercomputers

http://www.kek.jp/intra-e/press/2006/supercomputer_e.html

Gauge Fields on a lattice

scalar $\triangleleft_{\text {site }} n \quad$ vector \Rightarrow link (n, μ)
(continuum) Gauge Fields $A_{\mu}(x)=A_{\mu}^{a}(x) T^{a} \in \mathcal{S U}(N)$

$$
\begin{gathered}
\operatorname{tr} T^{a}=0,\left(T^{a}\right)^{\dagger}=T^{a} \Rightarrow \quad T^{a}: \text { Traceless, Hermite } \\
\operatorname{tr} T^{a} T^{b}=\frac{1}{2} \delta^{a b} \quad \text { orthogonality, normalization } \\
{\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}, \quad f^{a b c} \text { structure constant of group } \operatorname{SU}(\mathrm{N})}
\end{gathered}
$$

Problem: A_{μ} is not gauge covariant !

$$
\Omega(x) \in S U(N): \text { gauge tr. }
$$

$$
A_{\mu}(x) \rightarrow \frac{\Omega(x) \partial_{\mu} \Omega^{\dagger}(x)}{i g}+\Omega(x) A_{\mu}(x) \Omega^{\dagger}(x)
$$

Gauge Fields on a lattice II

Link variables
g : coupling constant

$$
U_{n, \mu}=\exp \left[i g a A_{\mu}(n)\right] \in \mathrm{SU}(\mathrm{~N}) n \quad n+\hat{\mu}
$$

Gauge transformation $g_{n} \in \mathrm{SU}(\mathrm{N})$

$$
U_{n, \mu} \rightarrow U_{n, \mu}^{g}=g_{n} U_{n, \mu} g_{n+\hat{\mu}}^{\dagger}
$$

covariant

Gauge Invariance III

Product of link variables

$$
\prod U \equiv U_{n, \mu_{1}} U_{n+\hat{\mu}_{1}, \mu_{2}} \cdots U_{m-\hat{\mu}_{k}, \mu_{k}} \longrightarrow g_{n} \prod U g_{m}^{\dagger}
$$

$\operatorname{tr}\left\{\prod_{C} U\right\}$ is gauge invariant

Wilson Loops

Fig. 5. The two gauge invariant quantities. a) An ordered string of $U^{\prime} s$ capped by a fermion and an anti-fermion and b) closed Wilson loops.
R. Gupta, "Introduction to Lattice QCD", arXiv:hep-lat/9807028

Wilson action

$$
S_{W}=\frac{1}{g^{2}} \operatorname{Re} \sum_{x, \mu>v} \operatorname{Tr} \frac{1}{2}\left(1-U_{x, \mu} U_{x+a \tilde{h}, v} U_{x+a r, \mu}^{\dagger} U_{x, v}^{\dagger}\right)
$$

- Simplest discretized action of the Yang-Mills part of the QCD action
- Agrees with the QCD action to order $\mathrm{O}\left(a_{2}\right)$.
- Proportional to the gauge-invariant trace of the sum over all plaquettes.

From Wilson to Yang Mills

- Matrices U given $\operatorname{by} U_{\mu}(x)=\exp \left(\operatorname{iag} A_{\mu}\left(x+\frac{\hat{\mu}}{2}\right)\right)$
- The simplest Wilson loop, the 1x1 plaquette given by

$$
\begin{aligned}
W_{\mu v}^{12 x} & =U_{\mu}(x) U_{v}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{v}) U_{v}^{\dagger}(x) \\
& =\exp \left(\operatorname{iag}\left[A_{\mu}\left(x+\frac{\hat{\mu}}{2}\right)+A_{\psi}\left(x+\hat{\mu}+\frac{\hat{r}}{2}\right)-A_{\mu}\left(x+\hat{v}+\frac{\hat{\mu}}{2}\right)-A_{v}\left(x+\frac{v_{2}^{\prime}}{2}\right)\right]\right)
\end{aligned}
$$

- Expanding about $x+\frac{\mu+r}{2}$ gives

$$
=\exp \left[i a^{2} g\left(\partial_{\mu} A_{v}-\partial_{\nu} A_{\mu}\right)+\frac{i a^{4} g}{12}\left(\partial_{\mu}^{3} A_{v}-\partial_{v}^{3} A_{\mu}\right)+\ldots\right]
$$

- The Taylor series of the exponent gives

$$
=1+i a^{2} g F_{\mu \nu}-\frac{a^{4} g^{2}}{2} F_{\mu v} F^{\mu v}+O\left(a^{6}\right)+\ldots
$$

- From this we derive

$$
\operatorname{Re} \operatorname{Tr}\left(1-W_{\mu v}^{|x|}\right)=\frac{a^{4} g^{2}}{2} F_{\mu v} F^{\mu v}+\ldots
$$

Lattice Fermions: Naive Fermion

$$
\begin{aligned}
& S_{F}=\int d^{4} x \bar{\psi}\left(\gamma_{\mu} D_{\mu}+m\right) \psi \\
& \leadsto \\
& S_{F}=a^{4} \sum_{n} \bar{\psi}_{n}\left[\sum_{\mu} \gamma_{\mu} \frac{U_{n, \mu} \psi_{n+\hat{\mu}}-U_{n-\hat{\mu}, \mu}^{\dagger} \psi_{n-\hat{\mu}}}{2 a}+m \psi_{n}\right] \\
& a^{3 / 2} \psi \rightarrow \psi, m a=M \text { (dimensionless) } \\
& S_{F}=\frac{1}{2} \sum_{n, \mu}\left[\bar{\psi}_{n} \gamma_{\mu} U_{n, \mu} \psi_{n+\hat{\mu}}-\bar{\psi}_{n+\hat{\mu}} U_{n, \mu}^{\dagger} \psi_{n}\right]+M \bar{\psi}_{n} \psi_{n} \\
& \underset{n}{\mathrm{O}} \underset{U_{n, \mu}}{\mathrm{O}}+\hat{\mu} \\
& \underset{n}{\mathrm{O}-} \underset{U_{n, \mu}^{\dagger}}{ } \mathrm{O}+\hat{\mu}
\end{aligned}
$$

Fermion doubling

$$
g^{2} \rightarrow 0\left({ }^{\forall} U_{n, \mu}=1\right) \quad S_{F}=\int \frac{d^{4} p}{(2 \pi)^{4}} \bar{\psi}(-p)\left[i \gamma_{\mu} \sin \left(p_{\mu} a\right)+M\right] \psi(p)
$$

propagator

$$
G_{F}(p)=\frac{1}{i \gamma \cdot s+M}=\frac{-i \gamma \cdot s+M}{s^{2}+M^{2}} \quad i \gamma \cdot s=\gamma_{\mu} s_{\mu}=\gamma_{\mu} \sin \left(p_{\mu} a\right)
$$

pole of $G_{F}(p)$ in $a \rightarrow 0\left(\hat{p}_{\mu} \ll 1 / a\right) \quad \sin \left(p_{\mu} a\right)=\left\{\begin{array}{cc}\hat{p}_{\mu} a & p_{\mu}=\hat{p}_{\mu} \\ -\hat{p}_{\mu} a & p_{\mu}=\pi / a+\hat{p}_{\mu}\end{array}\right.$

$$
\lim _{a \rightarrow 0} G_{F}(p)=\frac{1}{a} \sum_{p_{\mu}=0, \pi / a} \frac{-i(-1)^{\delta} \gamma \cdot \hat{p}+m}{\hat{p}^{2}+m^{2}} \quad \begin{aligned}
& \delta_{\mu}=0 \text { for } p_{\mu}=0 \\
& \delta_{\mu}=1 \text { for } p_{\mu}=(\pi / a)
\end{aligned}
$$

1 lattice fermion field $\Rightarrow 2^{d}=16$ particles ("doubling problem")

$$
2^{d} \rightarrow\left\{\begin{array}{lll}
2^{d-1} & \text { chirality }+ & (|\delta|=\text { even }) \\
2^{d-1} & \text { chirality }- & (|\delta|=\text { odd })
\end{array}\right.
$$

Solution: Wilson fermions

Add $O(a)$ term \Rightarrow mass to doublers $\left({ }^{\exists} p_{\mu}=\pi / a\right) \quad$ "Wilson term"

$$
\begin{aligned}
& S_{W}=-a r \int d^{4} x \bar{\psi} D^{2} \psi \rightarrow-\frac{r}{2} \sum_{n, \mu}\left[\bar{\psi}_{n} U_{n, \mu} \psi_{n+\hat{\mu}}+\bar{\psi}_{n+\hat{\mu}} U_{n, \mu}^{\dagger} \psi_{n}-2 \bar{\psi}_{n} \psi_{n}\right] \\
& S_{F}=S_{F}^{0}+S_{W} \longrightarrow \bar{\psi}(\gamma \cdot D+m) \psi \quad(a \rightarrow 0) \\
& g^{2}=0\left(U_{n, \mu}=1\right) \\
& \overbrace{M+r \sum_{\mu}\left(1-\cos \left(p_{\mu} a\right)\right]}^{M(p)}] \psi(p) \Rightarrow G_{F}(p)=\frac{-i \gamma \cdot s+M(p)}{s^{2}+M(p)^{2}} \\
& a \rightarrow 0 \\
& M(p)=\left\{\begin{array} { c c }
{ m a } & { \text { for physical pole } } \\
{ m a + 2 r | \delta | } & { \text { for doublers } }
\end{array} \Rightarrow \left\{\begin{array}{cl}
m_{\text {phys }} & =m \\
m_{\text {doubler }} & =m+\frac{2 r}{a}|\delta| \rightarrow \infty
\end{array}\right.\right.
\end{aligned}
$$

Caution: Wilson term violates chiral symmetry

Method of operation

- Six unknown input parameters, coupling constant and the masses of the up, down, strange, charm and bottom quark.
- Top quark too short lived to form bound states at the energies we are looking at.
- Fix in terms of six precisely measured masses of hadrons.
- Masses and properties of all the other hadrons can be obtained this way.
- They should agree with experiment.

Lattice constant

- Lattice constant a should be small to approach continuum limit, but not too small or the computation time becomes too long.
- Size nucleon in the order of 1 Fermi (1 Fermi $=1.0 \times 10^{-15} \mathrm{~m}$).
- a between 0.05 and 0.2 Fermi
- Results also have systematic errors due to this lattice discretization.

Quenched Approximation

- Quarks fully dynamical degrees of freedom that can be produced and annihilated.
- In the quenched approximation vacuum polarization effects of quark loops are turned off.
- Very popular approximation, reduces computation time by a factor of about $10_{3}-105$.

R. Gupta, "Introduction to Lattice QCD", arXiv:hep-lat/9807028

An Example: The Pion

- Calculate the Correlation Function

$$
O=\left(\bar{\psi}(x) \gamma_{s} \Psi(x)\right)^{+}\left(\bar{\psi}(0) \gamma_{s} \Psi(0)\right)
$$

- This should behave like $C(t)=\sum_{n} A_{n} e^{-m_{n} t}$
- We want to find the ground state mass $C(t) \rightarrow \mathrm{A}_{0} e^{-m_{0} t}$
As t becomes large

Mass of the ground state

- Plot $\ln \left(\frac{C(t)}{C(t+1)}\right)$ against t as

$$
\ln \left(\frac{C(t)}{C(t+1)}\right)=\ln \left(\frac{A_{0} e^{-m_{0} t}}{A_{0} e^{-m_{0}(t+1)}}\right)=\ln \left(e^{m_{0}}\right)=m_{0}
$$

- Look for a plateau

Mass Plot

Chiral Extrapolation

Nucleon Mass

Lattice spacing

References

http://www.kvi.nI/~loehner/saf_seminar/2008 LatticeQCD.ppt
http:/Asi2005.phys.ntu.edu.tw/speakers/000078/aoki.ppt
http://arxiv.org/abs hep - $\mathrm{hat/9807028v1}$
http://www.physics.gla.ac.uk/ppt/ndex_files/pptsymp/PCooney.ppt

Lattice QCD (introduction)by PolikarkovDUBNAWINTER SCHOOL12FEBRUARY2005

