DISCOVERY OF NEUTRINO OSCILLATIONS

FRANKLIN ADAMS

UNIVERSITY OF SOUTH CAROLINA – DEPARTMENT OF PHYSICS AND ASTRONOMY

KAMIOKANDE

- Kamioka Nucleon Decay Experiment
 - 3000 tons of water
 - 1000 50cm PMTs
 - 1000m underground
- Built in 1983 to detect proton decay, no evidence after 3 years
- Suspected that software was not good enough
- New software was tested on single Cherenkov-ring events
- Unexpected result
 - Much fewer v_{μ} than expected

COSMIC RAY DECAY

- Cosmic Ray enters the atmosphere
- Produces a $\pi \rightarrow \mu + v_{\mu}$
- $\mu \to e + v_e + v_{\mu}$
- Should expect ~2 v_{μ} per v_{e} for atmospheric neutrinos

© Marzena Lapka, CERN 2017

RESULTS OF KAMIOKANDE

- Monte Carlo simulation 21.8 kiloton*year
- Data from 2.86 kiloton*year exposure
- Not at 2:1 ratio due to detection efficiency of μ detection
- v_e ratio 1.05±0.11
- ν_µ ratio 0.59±0.07

K. Hildta et al, Hiys.Lett.D 205 (1500) 410.		
	Data	Prediction
v _e events	93	88.5
v_{μ} events	85	144.0

K Hirata et al Phys Lett B 205 (1988) 416

WHY DOES NEUTRINO OSCILLATION IMPLY MASS

From the time - dependent Schrödinger equation :

$$\begin{pmatrix} \nu_1(\vec{x},t) \\ \nu_2(\vec{x},t) \end{pmatrix} = e^{i\vec{p}\cdot\vec{x}} \begin{pmatrix} e^{-iE_1t} | \nu_1(0) \rangle \\ e^{-iE_2t} | \nu_2(0) \rangle \end{pmatrix}$$
$$= e^{i\vec{p}\cdot\vec{x}} \begin{pmatrix} e^{-iE_1t} & 0 \\ 0 & e^{-iE_2t} \end{pmatrix} \begin{pmatrix} | \nu_1(0) \rangle \\ | \nu_2(0) \rangle \end{pmatrix}$$

Using the relation between mass and flavor eigenstates : $\begin{pmatrix} |\nu_{\mu}(\vec{x},t)\rangle \\ |\nu_{\tau}(\vec{x},t)\rangle \end{pmatrix} = e^{i\vec{p}\cdot\vec{x}} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} e^{-iE_{1}t} & 0 \\ 0 & e^{-iE_{2}t} \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} |\nu_{\mu}(0)\rangle \\ |\nu_{\tau}(0)\rangle \end{pmatrix}$

If
$$|\nu_{\mu}(0)\rangle = 1$$
 and $|\nu_{\tau}(0)\rangle = 0$:
 $||\nu_{\tau}(\vec{x},t)\rangle|^{2} = \sin^{2}(2\theta)\sin^{2}\frac{(E_{2}-E_{1})t}{2} \equiv P(\nu_{\mu} \rightarrow \nu_{\tau})$

© Dave Casper, UC Irvine 2016

WHY DOES NEUTRINO OSCILLATION IMPLY MASS

If $E_1, E_2 >> m_1, m_2$:

$$E_2 - E_1 = \sqrt{m_2^2 + p^2} - \sqrt{m_1^2 + p^2} \approx \frac{m_2^2 - m_1^2}{2p}$$

and

$$t \approx |\vec{x}| \equiv L,$$

$$p \approx E$$

Therefore :

$$P(v_{\mu} \to v_{\tau}) \approx \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2}{4}\frac{L}{E}\right)$$

- So, the probability of a neutrino oscillating is a function of: θ , L, E, and Δm
- If Δm = 0 neutrinos will have a zero probability to oscillate

NEUTRINO OSCILLATION CONDITIONS

- In the case of $v_{\mu} \rightarrow v_{\tau}$ oscillation
 - Blue curve represents probability to remain v_{μ}
 - Red curve represents probability to become v_{τ}
- At short distances L, neutrinos will have a very low probability to oscillate

NEUTRINO OSCILLATION CONDITIONS

© Review of the Universe

- Should observe a deficit in v_{μ} that pass through the earth
 - Upward going v_{μ}
- Want to create conditions to observe oscillations

- Kamiokande was not enough to be conclusive
- Need a much larger detector

SUPER-KAMIOKANDE

© Kamioka Observatory 2018

• 3000 -> 50,000 ton water Cherenkov Detector

- 1000 -> 13,000 PMT
- 1000m underground

POSSIBLE NEUTRINO EVENTS

© Takaaki Kajita, Nobel Lecture 2015

POSSIBLE NEUTRINO EVENTS

© Takaaki Kajita, Nobel Lecture 2015

RESULTS

- $\cos\theta = 1$ down-going neutrino
- Shaded boxes are predictions
- Crosses are observations
- All things considered 6.2 o
 - ~1 in 1.8 billion

© Takaaki Kajita, https://arxiv.org/abs/hep-ex/9810001

MORE DATA

- 1998 data contains 531 events
- 2015 data contains 5485 events
- Heaviest neutrino ~10,000,000 times smaller than electron
- v_{μ} oscillate maximally to v_{τ}

© Takaaki Kajita, Nobel Lecture 2015

GAUSSIAN DISTRIBUTION

© Brian Murphy & Rachelle Barr, University of Wisconsin

μ±Nσ	% within range	Daily Frequency
1	68.26894921%	Twice a week
2	95.44997361%	Every three weeks
3	99.73002039%	Yearly
4	99.99366575%	Every 43 years
5	99.99994267%	Every 4776 years
6	99.99999980%	Every 1.38 M years

WHAT NEXT

- Even bigger detector, Hyper-Kamiokande
 - To start taking data in second half of 2020's
 - 50,000 -> 260,000 tons of water
 - 11,000 -> 40,000 PMT
- Goals are to
 - Order neutrino masses
 - CP violation measurement
 - Proton decay

© Hyper-Kamiokande Collaboration, hyper-k.org 2019

ACKNOWLEDGEMENTS

- Takaaki Kajita Nobel Lecture. NobelPrize.org. Nobel Media AB 2021. Thu. 4 Mar 2021. https://www.nobelprize.org/prizes/physics/2015/kajita/lecture/
- Hyper Kamiokande Goals <u>http://www.hyper-k.org/en/physics.html</u>
- Neutrino Oscillation Calculations <u>http://www.ps.uci.edu/~superk/oscmath2.html</u>
- Kamiokande Expectations K. Hirata et al, Phys.Lett.B 205 (1988) 416

THREE NEUTRINO OSCILLATIONS

© Wikipedia, Neutrino oscillation 2011