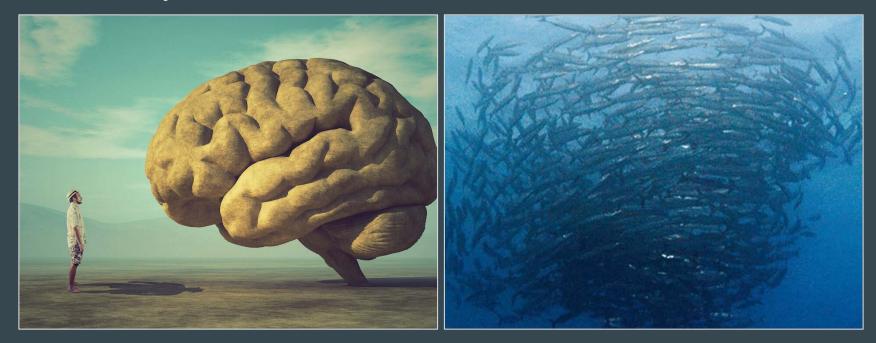
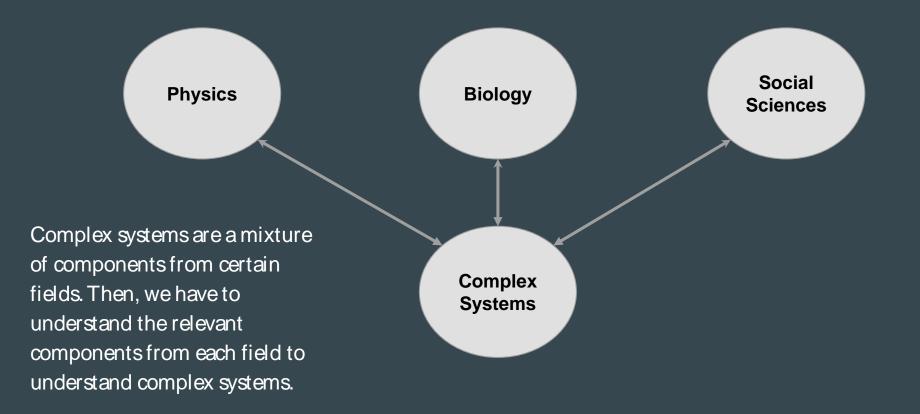
Complex system Theory

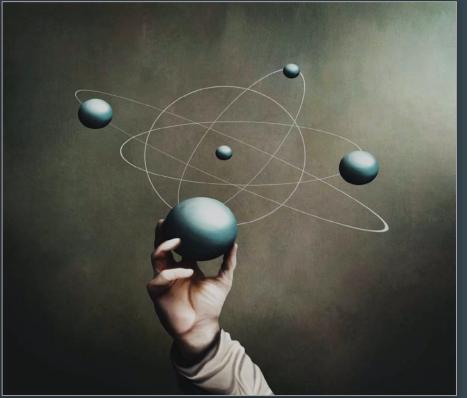
A Brief Conceptual Introduction


By Jean-Joseph Benoit



1. Components of Complex System Theory

2. What are Complex systems? 3. The Future and Impact of Complexity


What do they have in common?

1. Components of Complex System theory

What is physics?

- It is an **experimental**, **predictive**, and **quantitative** science of matter and its interactions.
- Matter ranging from microscopic to macroscopic
- The field mostly relies on analytical solutions because the four fundamental forces are:
 - Homogeneous (act in the same way everywhere)
 - Isotropic (act in the same in all direction)
 - Forces differ greatly in strength.

Compare and Contrast

• Goals:

- Experimentally testable, quantitative, and predictive
- Subject:
 - Physical matter, and their interactions
- Key Assumptions and fact:
 - Homogeneous,
 - Isotropic,
 - Forces are domain specific
- Analytical

- Goals:
 - Experimentally testable, quantitative, and predictive
- Subject:
 - 'Generalized' matter, and their 'generalized' interactions
- Key Assumptions and fact:
 - Homogeneous (mostly not).
 - Isotropic (mostly not).
 - Interaction can change over time and be **specific** (i.e. Not all elements, only certain pairs or groups of elements, interact with each other.)
- Algorithmic

Complex System From the physics' perspective

- Composed of many elements describe by state.
- Elements are "generalized matter".
- Interactions may be specific, hence, interaction networks.
- Interactions are
 "generalized interactions"
- Interaction can be superposed.

- *Chaotic*, that is depend strongly on the initial conditions and details of the system.
- Complex systems can exhibit a rich structure and have a huge variety of macrostates that often cannot be inferred from the properties of the elements (*Emergence*).

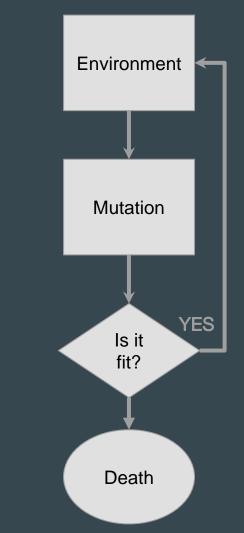
The theory of complex systems is the quantitative, predictive, and experimentally testable science of generalized matter interacting through generalized interactions. $M_{ii}^{lpha}(t)$

Cell Systems

Volume 13 Number 8 August 17, 2022

Components of complex systems from Biology

- For complex systems, the framework of physics is incomplete.
- several key features of complex systems that have been adopted from biology. In particular, we discuss the concepts of evolution, adaptation, robustness self-organization, and, again, networks

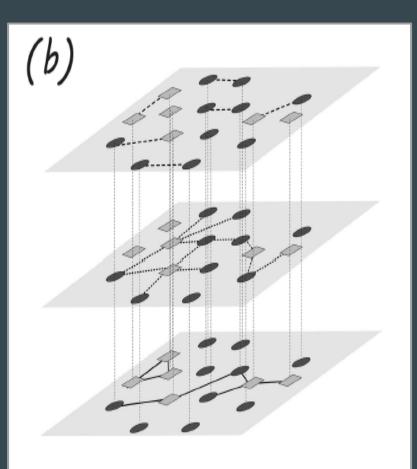


Evolution

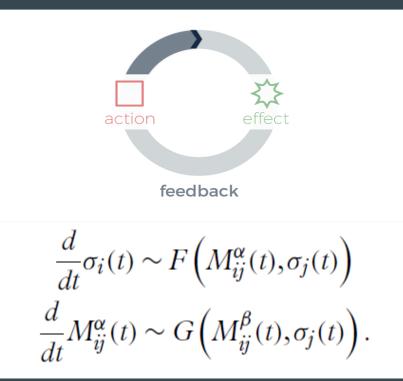
It is a natural process of Increasing and reducing diversity (i.e. Variety) through the interaction of an organism with its environment.

The Evolutionary Process

- Three critical components:
 - Replication
 - Stochastic
 - Variation (i.e. Mutation)
 - Environment
 - Not fixed, always changing
- Existence of "Booms" and "Crashes".



Components of complex systems from the social sciences Key features of complex systems that have been adopted from social science: co-evolution, multilayered interactions, and game theory.


Multilayered time varying networks

- Social systems can be thought of as time-varying multilayered networks.
- Interactions happen simultaneously at more or less the same strength scale on a multitude of superimposed interaction networks.
- Interactions change over time

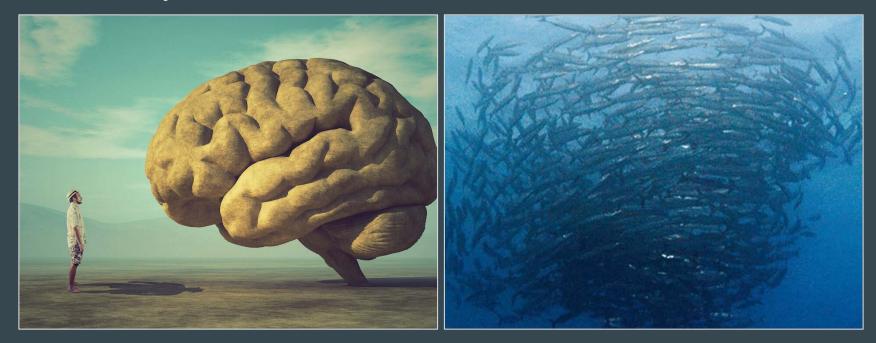
Co-evolution

- the derivatives mean '*change within the next time step*' and should not be confused with real derivatives.
- The first equation means that the states of element i change as a 'function', F, that depends on the present states of j.
- The second equation specifies how the interactions evolve over time as a function G that depends on the same inputs, states of elements and interaction networks.

2.

What are complex systems?

Co-evolving Multilayered networks.


Facts summary about complex systems

- Complex systems are composed of many elements. (nodes)
- These elements interact with each other through one or more interaction types. (links)
- Networks = nodes and links.
- Multilayer network can evolve independently or co-evolve.

"More is different." - Philip W. Anderson

- Interactions are not static but change over time.
- Elements are characterized by states that can evolve with time.
- The dynamics of co-evolving multilayer networks is usually highly non-linear (i.e **Chaotic**).
- Complex systems are contextdependent.
- Complex systems are algorithmic.
- Emergent Properties.

What do they have in common?

3.

The Future and Impact of Complexity

Consistent Mathematical Framework

- Meaningful generalization of statistical mechanics, and information theory so that
- they finally become useful for complex systems.
- Categorizing probabilistic complex systems. Once we know which universality class a particular system belongs to, we know how it behaves statistically, how to identify its relevant parameters, and where its transition and breaking points might be.
- Unifying the many different approaches to evolution and co-evolution into a single mathematical framework.
- Developing mathematical formalisms for co-evolutionary dynamics of states and
- interactions.
- Lack of appropriate algorithm

Possible Impact of Complex System Theory

- Governmental Policies
 - Predict Possible consequences of Socio-Political and economic policies
- Finance
 - More efficient financial markets.
 - Predict Booms and crashes
- Neuroscience
 - Brain mapping project
- Condensed Matter Physics
- And More.

Reference

All information presented came from the textbook: *Introduction to the Theory of Complex System*, published in 2018.

the Theory of Complex Systems

STEFAN THURNER RUDOLF HANEL PETER KLIMEK

Thank you for your time!