Optical Tweezers and Their Application to Eldogical Systems

Fatima Elkhatib
Fram 2018 Physics Nobel Prize Lecture – Arthur Ashkin
University of South Cardina Fall 2021 – Physics 730

Overview

- Light and its Properties
- Optical Tweezers
- How Optical Tweezers are Used

Importance of Optical Tweezers

- Optical Tweezer: laser beams used to trap and manipulate molecules and even living cells
- Measurements:
 - Subatomic forces
 - Piconewton (10⁻¹² N)
 - Torque
 - Diffusion Dynamics

'Optical tweezer' takes Nobel concept in a new direction : NewsCenter (rochester.edu)

Light Amplification by Stimulated Emission of Radiation

Light Amplification in Lasers - Colour Reproduction in Electronic Imaging Systems - Wiley Online Library

Lasers: lasers | Glogster EDU - Interactive multimedia posters

Refraction

- Bending of light through a transparent object
- Beam changes direction

Thermal Effects

Radiometer | Dusty Loft (wordpress.com)

- Light shined on radiometer
- Black side absorbs more light -> hotter
- Heat transferred to air molecules that hit vanes
- Molecules on black side gain more energy -> recoil -> motion

Solar Energy -> Thermal Energy -> Kinetic Energy

Light Pressure

Physicists make first observation of the pushing pressure of light

- Light hits on object
- Counteractive force leads to motion
- Photons have momentum

Forces on Bead

- Light has momentum
- Intensity of Beam
- Scattering Force

Nobel Lecture: Optical Tweezers and their Application to Biological Systems (nobelprize.org

Optical Trapping

- Brightest in middle
- Sphere is off center
- More photons passing through bottom of sphere

- Momentum
- Newton's Third Law
- Sphere gets pushed back towards middle of laser beam

- Brightest in middle
- Sphere is off center
- More photons passing through top of sphere

Optical Levitation

- Some light gets absorbed by the sphere
- Sphere gets pushed
- Light pushes sphere up, and gravity pushes down
- Instability

Nobel Lecture: Optical Tweezers and their Application to Biological Systems (nobelprize.org)

Laser Through Lens

Optical Tweezers and the 2018 Nobel Prize in Physics - Sixty Symbols - YouTube

- Putting a lens
- Focal point
- Traps the sphere

Focused Beam

Introduction: Optical Traps - Soft Matter Physics Division - University of Leipzig (uni-leipzig.de)

Single-Beam Optical Tweezer

- One laser beam
- Focus point
- Equilibrium point
- Bead is trapped

Nobel Lecture: Optical Tweezers and their Application to Biological Systems (nobelprize.org)

Dual-Beam Optical Tweezer

- Bead attached to DNA
- Bead attached to RNA
- DNA stretching
- DNA transcription
 - Protein moves along DNA
 - Unzips DNA double helix
 - Copies DNA sequence

Optical Tweezers for Single-Cell, Multicellular Investigations in the Life Sciences | American Laboratory

Connecting to Live Cell

- Particle decorated with antibodies
 - Connects to cell membrane
- Optical trap pulls particle away from cell until the chemical bond breaks
- Elongated membrane tether
- Understand mechanical properties of cell membrane

Optical Tweezers for Single-Cell, Multicellular Investigations in the Life Sciences | American Laboratory

Without Attaching Sphere to Microorganism

Tobacco mosaic virus - PRG Wiki (crg.eu)

- Tobacco mosaic virus
- Refracting end
- Can be trapped by optical tweezer
- Doesn't only trap spheres

Uses of Optical Tweezers

- Force to optically trap particle depends directly on refractive index as compared to surrounding medium
- Most used particles: silica and polystyrene microspheres
 - Refractive index higher than that of water
 - Coating of microspheres
- Can increase numerical aperture of the laser beam to increase intensity
- Can trap and attach particle to another particle

Optical trapping of coated microsph eres (osapubli shing.org) Micromachines |
Free Full-Text |
Optical
Tweezers:
Phototoxicity and
Thermal Stress in
Cells and
Biomolecules |
HTML
(mdpi.com)

Future of Optical Tweezers

- Direct manipulation of a single molecule (such as a protein)
- Measuring forces of microscopic objects inside cells
- Aim to advance into the nanoscale level

Sources

Arthur Ashkin: Nobel Lecture in Physics 2018. (n.d.). Www.youtube.com. Retrieved October 15, 2021, from https://www.youtube.com/watch?v=wAGOArzsEmQ&t=7s

Crookes radiometer. (2021, October 10). Wikipedia. https://en.wikipedia.org/wiki/Crookes_radiometer

Introduction: Optical Traps - Soft Matter Physics Division - University of Leipzig. (n.d.). Home.uni-Leipzig.de. https://home.uni-leipzig.de/pwm/web/?section=introduction&page=opticaltraps

light - Radiation pressure. (n.d.). Encyclopedia Britannica. Retrieved October 15, 2021, from https://www.britannica.com/science/light/Radiation-pressure

Optical tweezers: where physics meets biology. (2008, November 13). Physics World. https://physicsworld.com/a/optical-tweezers-where-physics-meets-biology/

Physics: Optical levitation - HandWiki. (n.d.). Handwiki.org. Retrieved October 15, 2021, from https://handwiki.org/wiki/Physics:Optical levitation

Refraction - Key Stage Wiki. (n.d.). Www.keystagewiki.com. Retrieved October 15, 2021, from https://www.keystagewiki.com/index.php/Refraction

Refraction in a sphere. (n.d.). Samdriver.xyz. Retrieved October 15, 2021, from https://samdriver.xyz/article/refraction-sphere

Science Learning Hub. (2012, April 26). Refraction of light. Science Learning Hub; Science Learning Hub. https://www.sciencelearn.org.nz/resources/49-refraction-of-light

Sixty Symbols. (2018). Optical Tweezers and the 2018 Nobel Prize in Physics - Sixty Symbols [YouTube Video]. In YouTube. https://www.youtube.com/watch?v=XjXLJMUrNBo

Spesyvtseva, S. E. S., & Dholakia, K. (2016). Trapping in a Material World. ACS Photonics, 3(5), 719–736. https://doi.org/10.1021/acsphotonics.6b00023

The Nobel Prize in Physics 2018. (n.d.). NobelPrize.org. https://www.nobelprize.org/prizes/physics/2018/ashkin/lecture/

Thursday, November 26, & Tweet, 2015. (n.d.). Optical Tweezers for Single-Cell, Multicellular Investigations in the Life Sciences. Www.americanlaboratory.com. Retrieved November 18, 2021, from https://www.americanlaboratory.com/914-Application-Notes/180081-Optical-Tweezers-for-Single-Cell-Multicellular-Investigations-in-the-Life-Sciences/

Tobacco mosaic virus - PRG Wiki. (n.d.). Prgdb.crg.eu. Retrieved October 15, 2021, from http://prgdb.crg.eu/wiki/Species:Tobacco mosaic virus

Wikipedia Contributors. (2019, October 28). Optical tweezers. Wikipedia; Wikimedia Foundation. https://en.wikipedia.org/wiki/Optical_tweezers

Zyga, L., & Phys.org. (n.d.). Physicists make first observation of the pushing pressure of light. Phys.org. Retrieved October 15, 2021, from https://phys.org/news/2015-06-physicists-pressure.html