Corotation Resonance of Non-barred Spiral Galaxies

A Research work

By Arjun Karki

with Prof. Marc Seigar
(Research advisor)
Outline

- Motivation / Objective
- Introduction
 - Density wave theory
 - Corotation resonance
- Method
 - Multi-band Photometry method
- Results and Discussion
- Conclusion
Structure of a spiral galaxy

Image courtesy of ESA/NASA and Hubble
Motivation

- To understand about Density wave theory
- To know about corotation resonance and its importance in the disk galaxies.
- To learn the method of determining the location of corotation resonance.
What is winding problem?

- Differential rotation of materials such as gas, dust, cloud etc in the galactic disk.
- Tightening of spiral arms due to decrease in the pitch angle of the spiral arms.
- Destruction of the spiral arm structure causing the galaxy to lose the shape of spiral arms.
Continued

After some rotations

Real images of some galaxies
Density Wave Theory

Introduction

- This theory was proposed by two astronomers, Lin and Shu in 1964.
- The theory introduced the concept of quasi-static density waves.

Assumptions

- Presence of long lived quasi-static density wave
- Constant pattern speed of spiral arm and differential rotation of material
Corotation resonance

Plot of angular speed as a function of radius

Angular velocity (km/s/kpc)

Radius (kpc)
Data sample: a short description

- Data sample were taken from the Carnegie-Irvine Galaxies Survey (CGS; Ho et al. 2011)

- Optical images were observed on the 2.5 m du Pont Telescope at the Las Campanas Observatory in Chile in between 2003 and 2007 with the Direct CCD Camera during dark time.

- The galaxy images were taken in four different bands.

 B V R I
Method

- **Multiband photometry method**
 - Developed by Puerari and Dottori in 1997
 - Photometric analysis of existing images
 - Images are analyzed using different routines within PyRAF
 - Images are processed through **3 major steps**

They are:

1. Foreground star subtraction
2. Image deprojection
3. Fourier transformation
Foreground star subtraction

- PyRAF `daofind` task is used to determine the co-ordinates of all foreground stars present in the image.
- PyRAF `psf` task is run to select those stars which were needed to be removed from the image.
- PyRAF `substar` task is run to subtract those fitted stars from the image.
The galaxy image is rotated by an angle equal to PA using PyRAF `rotate` task.

PyRAF `ellipse` task is used to fit elliptical isophotes over the images.

The rotated image is magnified along x-axis by an amount equal to its axis ratio using PyRAF `magnify` task.
Fourier transformation

- Creating azimuthal and radial profiles

Each galaxy image is divided into 360 azimuthal sections, each of 1 degree wide and 120 radial sections, each 1 of pixel wide.

- Applying Fourier transformation

\[
F_2(r) = \int_{-\pi}^{\pi} I_r(\theta) e^{-2i\theta} d\theta
\]

The phase angle can be obtained as

\[
\theta(r) = \tan^{-1} \left(\frac{\text{Re} \left[F_2(r) \right]}{\text{Im} \left[F_2(r) \right]} \right)
\]

Here, Re and Im mean the real and imaginary parts of the complex Fourier coefficient.
Phase angle versus radius plot

Presence of azimuthal age gradient (color gradient)
Some examples

This galaxy has a single phase crossing which represents the location of corotation radius.
This galaxy has more than one phase crossing (within the range of 5 arc-seconds) which represents the location of corotation range / region.
Data results

<table>
<thead>
<tr>
<th>Galaxy name</th>
<th>P.A (deg)</th>
<th>Axis ratio (a/b)</th>
<th>Ellipticity [1 - (b/a)]</th>
<th>Corotation radius (arcsec)</th>
<th>Corotation radius (pix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 2627</td>
<td>20</td>
<td>1.3</td>
<td>0.22</td>
<td>12.28±0.04</td>
<td>47.30±0.15</td>
</tr>
<tr>
<td>IC 5332</td>
<td>17</td>
<td>1.2</td>
<td>0.17</td>
<td>49.65±1.27</td>
<td>191.70±4.90</td>
</tr>
<tr>
<td>NGC 895</td>
<td>-60</td>
<td>1.6</td>
<td>0.34</td>
<td>61.09±1.29</td>
<td>235.877±4.98</td>
</tr>
<tr>
<td>NGC 908</td>
<td>76</td>
<td>2.2</td>
<td>0.55</td>
<td>38.12±0.65</td>
<td>147.18±2.51</td>
</tr>
<tr>
<td>NGC 2280</td>
<td>163</td>
<td>2.2</td>
<td>0.55</td>
<td>32.90±0.82</td>
<td>127.03±3.17</td>
</tr>
<tr>
<td>NGC 2417</td>
<td>81</td>
<td>1.4</td>
<td>0.28</td>
<td>52.60±1.06</td>
<td>203.09±4.09</td>
</tr>
<tr>
<td>NGC 3223</td>
<td>135</td>
<td>1.8</td>
<td>0.45</td>
<td>56.26±0.38</td>
<td>217.22±1.47</td>
</tr>
<tr>
<td>NGC 3672</td>
<td>11</td>
<td>2.9</td>
<td>0.66</td>
<td>55.12±1.55</td>
<td>212.82±5.98</td>
</tr>
<tr>
<td>NGC 4030</td>
<td>41</td>
<td>1.5</td>
<td>0.33</td>
<td>72.57±0.75</td>
<td>280.19±2.90</td>
</tr>
<tr>
<td>NGC 4939</td>
<td>10</td>
<td>1.8</td>
<td>0.45</td>
<td>32.14±1.56</td>
<td>124.09±6.02</td>
</tr>
</tbody>
</table>
continue,

<table>
<thead>
<tr>
<th>Galaxy name</th>
<th>P.A (deg)</th>
<th>Axis ratio (a/b)</th>
<th>Ellipticity [1 - (b/a)]</th>
<th>Corotation radius (arcsec)</th>
<th>Corotation radius (pix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 5054</td>
<td>-20</td>
<td>1.5</td>
<td>0.33</td>
<td>60.65±0.97</td>
<td>234.17±3.75</td>
</tr>
<tr>
<td>NGC 5247</td>
<td>20</td>
<td>1.1</td>
<td>0.09</td>
<td>18.02±0.82</td>
<td>69.58±3.17</td>
</tr>
<tr>
<td>NGC 5254</td>
<td>-55</td>
<td>2.3</td>
<td>0.57</td>
<td>47.79±0.51</td>
<td>184.52±1.97</td>
</tr>
<tr>
<td>NGC 5324</td>
<td>60</td>
<td>1.2</td>
<td>0.17</td>
<td>32.74±1.17</td>
<td>126.41±4.52</td>
</tr>
<tr>
<td>NGC 5483</td>
<td>-45</td>
<td>1.1</td>
<td>0.09</td>
<td>31.87±1.96</td>
<td>123.05±7.57</td>
</tr>
<tr>
<td>NGC 6118</td>
<td>55</td>
<td>2.6</td>
<td>0.62</td>
<td>77.59±1.15</td>
<td>299.58±4.44</td>
</tr>
<tr>
<td>NGC 6753</td>
<td>40</td>
<td>1.3</td>
<td>0.23</td>
<td>32.84±0.26</td>
<td>126.80±1.00</td>
</tr>
<tr>
<td>NGC 7083</td>
<td>5</td>
<td>1.5</td>
<td>0.33</td>
<td>62.55±0.96</td>
<td>241.51±3.71</td>
</tr>
<tr>
<td>NGC 7606</td>
<td>-36</td>
<td>2.2</td>
<td>0.55</td>
<td>58.66±2.03</td>
<td>226.49±7.84</td>
</tr>
</tbody>
</table>
Conclusion

- We were successful to find the location of CR on those spiral galaxies.
- We used multi-band photometry method to determine the location of CR in a sample of 19 non-barred spiral galaxies.
- Out of 19 galaxies, 15 galaxies were found to have a single phase crossing while remaining 4 galaxies had more than one phase crossing.
- We were unable to compare the results with any other method’s results.