Outline

- Introduction to the Standard Model
- Brief history of Particle Physics
- Work of Kobayashi
- Experimental Confirmation
- Lepton Flavor Mixing
Introduction

- Matter
 - e^-, p^+, n
- Standard Model
 - 6 quarks, six leptons, fundamental interactions
- Comprehensive model for the elementary interactions of particle physics
Standard Model

- Established in the 1970's
- Describes how particles interact via the strong and electroweak forces
- Does not incorporate general relativity and dark matter
History

- Studied under Professor Shiochi Sakata and the Particle Physics group at Nagoya University
 - All 3 Nobel laureates from 2008 studied under Sakata
- Work of Sakata
 - Sakata Model - precursor to Quark model
Developments

- **1950’s**- many new and strange particles discovered
 - “explosion” of particles
- **1956**- Sakata Model
 - Hadrons are composite particles of triplets of p, n, Λ
- **1962**- discovered 2nd neutrino
 - Sakata presented MNS matrix
 - 1st quantitative theory of neutrino oscillation
Six Quark Model

- CP violation discovered in 1964 in decay of K^0 meson
- CP violation - violation of conservation laws associated with charge and parity
 - Violation of symmetry between particles and their anti-particles
 - No realistic explanation for CP violation with 3 or 4 quarks
Six Quark Model

- Models with 3 or 4 quarks don’t work!!
- Kobayashi proposed the 6 quark model
 - One possible solution to the problem
 - Predicted the existence of unknown particles
- Gauge Theory allows for flavor mixing
 - Have properties in which different configurations of an unobservable field result in identical quantities
 - Ex: can’t measure EM field but can measure charge, energy, etc.
 - Flavor mixing is a superposition of states
Six Quark Model

- Particles are lumped into groups and can sometimes be a superposition of states
 - Irreducible complex #’s represent flavor mixing
 - \[
 \begin{pmatrix}
 u \\
 d'
 \end{pmatrix} \begin{pmatrix}
 c \\
 s'
 \end{pmatrix} \begin{pmatrix}
 t \\
 b'
 \end{pmatrix} \approx \begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb}
 \end{pmatrix} \begin{pmatrix}
 d' \\
 s' \\
 b'
 \end{pmatrix} = \begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb}
 \end{pmatrix} \begin{pmatrix}
 d \\
 s \\
 b
 \end{pmatrix}
 \]
 - At the time, other proposed models had this same property
Six Quark Model

- 1974- J/ψ discovered
 - Bound state of the c, anti-c quarks
- 1975- τ lepton discovered
 - Suggested there should be a third family of quarks
- 1977- Upsilon particle discovered
 - Bound state of 5th quark, the b and anti-b
- 1995- t quark discovered
 - 6th and final quark
Experimental Confirmation

- **B-factories**
 - Accelerator that produces B-mesons
 - Pairs of quarks with either a b or anti-b quark
- **Prediction of large asymmetry between b and anti-b**
 - Find decay time by measuring its position by using a vertex detector
- **KEKB in Japan and PEPII at SLAC**
 - Great luminosities
 - Friendly competition
Experimental Results

- Colored circle show experimental constraints
- All overlap in one small region, colored red
- Can choose parameters in this region only
- 6 quark model explains all the results for parameters in this region
Results

- Quark mixing primary source of CP violation!!
 - Found an asymmetry between b and anti-b decays
- Room for new physics beyond standard model
- Need additional source of CP violation
 - Not enough to account for matter anti-matter asymmetry
- Lepton Flavor mixing
Lepton Flavor Mixing

- Super Kamiokande
 - Consistent with neutrino oscillation predictions
- KAMLand
 - Same observations
- Future experiments
 - T2K - similar to K2K but with higher intensities
 - $\nu_\mu \rightarrow \nu_e$ oscillations
- Crucial for estimating size of CP violation from leptons
Experimental Results

K2K Data (ν_μ) KAMLand Data (ν_e)
Conclusions

- 3 and 4 quark models did not allow for CP violation
- 6 quark model proposed by Kobayashi accounted for this
 - Experimental evidence to back it up
 - Particles that were discovered and from B-factories
- Need another source of CP violation
 - Lepton flavor mixing
- Hints of this from experiments already but more work is needed to be done
References