Homework Set 5	Instructor: Ralf W. Gothe	3/27/25
----------------	---------------------------	---------

- 5.1) Electron, Compton, and Proton Scattering Consider the two cases where an electron beam with $K_{10} = 3.0 \, GeV$ is elastically scattered off either a proton $m_p = 938 \, MeV$ or a lead nucleus $m_{Pb} = 192799 \, MeV$. Both nuclei are initially at rest.
- 5.1.1) [5] Calculate the maximum four momentum transfer Q^2 or $-K_{\mu}^2$ to the nuclei with $K_{\mu}^2 = (K_{1\mu} K_{2\mu})^2!$
- 5.1.2) [3] Calculate the corresponding kinetic energy, energy, and momentum of the scattered nuclei!
- 5.1.3) [2] Calculate the same quantities for elastic Compton scattering off both nuclei! Use for the initial photon energy $K_{10} = 3.0 \, GeV$.
- 5.1.4) **[GS]** [2+4] Calculate the same quantities for elastic proton scattering off both nuclei! Use the same initial energy $K_{10} = 3.0 \, GeV$ for the proton.

5.2) Rutherford Scattering

- 5.2.1) [5] α particles with $E_{kin} = 6 \, MeV$ from a radioactive source are scattered off $^{197}_{79}Au$ nuclei. At which scattering angle is the distance of the α particle to the $^{197}_{79}Au$ nucleus smallest? Calculate this distance! Why do you expect no deviations from the classical Rutherford cross section?
- 5.2.2) [4] Which kinetic energy is needed so that the α particle, based on the classical radii of both particles, just reaches the ${}^{197}_{79}Au$ nucleus? Why do you expect now deviations from the classical Rutherford cross section?
- 5.2.3) **[GS]** [5] Calculate the smallest distance of the α particle to the $\frac{197}{79}Au$ nucleus in dependence of the scattering angle ϑ !