
PHYS511L Lab 5: Attenuation Length

Spring 2016

1 Introduction

This lab walks through calculations used in testing and assessing a time of flight scintillator counter
in addition to showing more capabilities of ROOT for visualizing and computing with higher di-
mensional data. The quantity we are concerned with is the attenuation length of the counter. The
counter is a bar of scintillating material with a photomultiplier tube (PMT) attached to each end.
Whenever a particle interacts with the counter and creates photons in the counter, the position
of the origin of this light can be determined by using the simultaneous time information gathered
by the PMTs once the effective speed of light ceff is known. This calculation combined with very
precise clocks allows the measurement of the time and location at which a particle interacts with the
counter. Time-of-flight (TOF) detectors are built by assembling arrays of these counters, creating
a kind of net for tracking outgoing particles from a scattering reaction or other process.

However, not all materials are equally-well suited to be used for TOF counters. One such
measure of the quality of a TOF counter is the previously mentioned attenuation length. The
counter material causes a loss of photons which can be seen by the PMTs depending on the distance
the source is from each PMT. If N is the number of photons that reach a given PMT and D is the
distance the source is from the PMT surface, then

N = N0e
−D/λ (1)

where N0 is proportional to the total number of photons generated during the scintillation and
λ is the attenuation length. Therefore, if we had data of N versus D for a given PMT we could
determine the attenuation length via fitting this data with an exponential function. The first step
to doing this is learning how to find the interaction position for a particle passing through the
counter.

1.1 Finding the Source

Let’s say that a single particle has passed through the counter vertically in a straight line, causing
enough light to be detected by both PMTs. Letting L be the length of the counter and assuming
an x-axis along the counter with zero being in the center of the counter, if the position of the
interaction were given by x and the time of this interaction were given by t, then the times at
which the PMTs would detect the light would be given by

tL = t+
L/2 + x

ceff
(2)

1

and

tR = t+
L/2 − x

ceff
(3)

where tL and tR are the detection times for the left and right PMTs respectively. Notice that if we
calculate

∆t

2
=
tL − tR

2
=

x

ceff
(4)

then we can find the position of the light source through

x = ceff
∆t

2
= ceff

tL − tR
2

. (5)

1.2 Effective Speed of Light

To calculate ceff , we make use of the above source-finding technique in addition to the known length
of the bar and the distribution of ∆t/2. Ideally, ∆t/2 should have a uniform distribution with clear
boundaries for the minimum and maximum ∆t/2 values. If these boundaries were given by ∆tmin/2
and ∆tmax/2, then ceff could be computed via

cceff =
L

∆tmax/2 − ∆tmin/2
(6)

where again L is the counter length. However, due to many factors in the measurement process
the ∆t/2 distribution is convoluted and has tails. Figure 1 shows an example ∆t/2 distribution.

t/2 (TDC units)∆
-200 -150 -100 -50 0 50 100 150 200

C
ou

nt

0

50

100

150

200

250

300

350

400

t/2 Distribution∆

t/2 Distribution∆
FWHM Bounds

Plateau Height

t/2 Distribution∆

Figure 1: ∆t distribution with FWHM bounds and plateau height.

2

The plateau behavior in the center is still visible, and in fig. 1, the height of this plateau is
denoted by the blue line. Due to the tails, the actual minimum and maximum ∆t values do not
make a good estimate of the range of the distribution. Instead, we can use the full width at half
maximum (FWHM) of the distribution as an estimator for ∆tmax/2 − ∆tmin/2, resulting in

ceff =
L

FWHM
. (7)

1.3 Determining the Attenuation Length

In principle, determining the attenuation length would be as simple as finding an appropriate λ
through fitting N versus x for each PMT, and ideally each PMT should give the same result. To
measure N , an analog to digital converter (ADC) is used to integrate the current through a PMT’s
anode. This charge is proportional to N , and can be used in place of N for the exercises that
follow. However, as shown in fig. 2 and fig. 3, the number of photons N is statistically distributed
for each position x.

0

5

10

15

20

25

30

t/2∆
-200 -150 -100 -50 0 50 100 150 200

A
D

C

0

500

1000

1500

2000

2500

3000

3500

4000

t/2∆Left ADC vs. t/2∆Left ADC vs.

Figure 2: ADC channel versus ∆t distribution. ADC channel is proportional to N . Notice that this
is not a perfectly thin curve and therefore that N is statistically distributed for any given position
along the counter.

3

ADC
0 500 1000 1500 2000 2500 3000 3500 4000

C
ou

nt

0

20

40

60

80

100

120

140

160

180

200

220

histhist

Figure 3: ADC channel distribution for 40 TDC unit bin around ∆t/2 = 80 TDC units. Red line
is the Landau fit to this ADC distribution.

In practice, the number of photons that are detected by a PMT from a given position is dis-
tributed according to the Landau distribution,

ρLandau(N) =
1

π

∫ ∞
0

e−t log t−xt sin(πt)dt, (8)

which is well approximated by

ρLandau(N) ≈ 1

2π
exp

(
−1

2

(
x+ e−x

))
. (9)

(ROOT comes with this function built-in.) The Landau distribution is strange in that it does not
actually have a mean, but by defining a scaled (A), shifted (m), and stretched (σ) version as

ρ̃Landau(x;A,m, σ) = AρLandau((x−m)/σ), (10)

the m parameter can be used as the central or characteristic value. (In ROOT nomenclature m is
the “MPV” parameter.) Therefore, by collecting N distributions from specific positions along the
counter, fitting each with a Landau distribution, extracting m, and using m for the estimate of N ,
the N versus x plot can be obtained and then fitted against an exponential.

Without infinite statistics, it is not possible to collect ADC distributions from a single point,
so we need to divide the counter into subsections which are small enough to allow a good Landau
fit but large enough to allow enough statistics in the individual ADC distribution. As stated below
in the instructions, cutting ∆t/2 into 40 TDC unit increments is appropriate for the data provided
to you.

4

2 Lab Tasks

• Retrieve previously collected data from http://boson.physics.sc.edu/~gothe/511-S16/

rootlab/PHYS511L-S16/attlen.root. The tree name is “attlen”, and the branches are
“adc l” for the left ADC, “adc r” for the right ADC, “tdc l” for the left TDC, and “tdc r”
for the right TDC.

• For each PMT:

– Calculate the effective speed of light (ceff) from each PMT’s perspective.

– Using a cut width of 40 TDC units, plot the central ADC value m versus the position x
along the counter on top of a plot of the 2-D histogram of m and x. Make sure not to
overlap the cut ranges; you should cut in ranges like [-400,-360],[-360,-320],...

– Include sample ADC distribution plots from the 40 TDC unit cuts (at least one from
each PMT) along with the Landau fits in your lab report.

– Calculate the attenuation length from each PMT’s perspective. Make sure to use the
appropriate effective speed of light in each case.

– Plot the exponential fits you used for the attenuation length calculation in the same m
versus x plot above.

• Using the average of the two attenuation length estimates as the attenuation length for the
counter, compare the attenuation length with the actual length of the counter. Does this
make physical sense? How should a good counter’s attenuation length compare to its actual
length? What about a bad counter’s attenuation length?

3 Helpful Information

• TDC units are 25 ps. Don’t forget to convert your ceff units using this information!

• The counter length L for the data in this experiment is 120 cm.

• 2-D histograms are very similar to 1-D histograms in terms of how you use them. The example
code below shows how:

// Initialization takes the following form:

TH2D hist("name","title",

X_nbins ,X_low ,X_high ,

Y_nbins ,Y_low ,Y_high);

//So , for example ,

TH2D* hist = new TH2D("adc_hist","adc_hist",

// delta t/2

100,-200,200,

//ADC

2001 , -0.5 ,4000.5);

// would give you an appropriately binned

//ADC vs. delta t/2 histogram

5

http://boson.physics.sc.edu/~gothe/511-S16/rootlab/PHYS511L-S16/attlen.root
http://boson.physics.sc.edu/~gothe/511-S16/rootlab/PHYS511L-S16/attlen.root

//To add data to this histogram , you still use

//the Fill function , but with an extra argument

// since you now fill 2 values at the same time

// instead of 1:

hist.Fill(x,y);

//Once you’ve filled your histogram , you can

//draw it , but you need to supply an extra

// argument to Draw so that it knows you want to

//view it on a 2-D plane instead of in 3-D

// space:

hist.Draw("colz");

//In addition to this , sometimes a histogram has

// strong peaks which make it difficult to see what

//we’re interested in (which is the case for this

//lab’s data). In these cases , it makes sense to

// adjust the z-axis of the histogram:

hist.GetZaxis()->SetRangeUser (0 ,30);

// which would set the z-axis range to [0 ,30].

• Using ROOT to process histograms is not difficult once you know the ins and outs of the
library, but for the sake of expediency, here are some functions to help you with calculating
the FWHM and the peak height of the ∆t/2 distribution:

// Finds average y value over peak plateau region. Avoids the

//non -physical peak at deltat = 0

double deltat_peak_y(TH1D* hist ,

double xlo=-50,

double xhi =50)

{

double npoints = 0;

double sum = 0;

double xpeak = 0;

double peak = -1;

long nbins = hist ->GetNbinsX ();

for(int bin = 1; bin < nbins; ++bin) {

double x = hist ->GetXaxis()->GetBinCenter(bin);

if(// avoid 0 bin

!(-1e-5 < x && x < 1e-5) &&

//Stay inside plateau

x > xlo &&

x < xhi) {

double content = hist ->GetBinContent(bin);

6

sum += content;

npoints ++;

}

}

return sum/npoints;

}

// Finds the left x value for the half -peak.

double deltat_halfpeak_left_x(TH1D* hist)

{

// can’t be positive so 1 makes a good default

double xleft = 1;

double left_halfpeak = 0;

double mindiff = 1e9;

const double halfpeak = 0.5* deltat_peak_y(hist);

long nbins = hist ->GetNbinsX ();

// Traverse from left to right

for(int bin = 1; bin <= nbins; ++bin) {

double x = hist ->GetXaxis()->GetBinCenter(bin);

if(x < -1e-5) { // stay left of 0 bin

double content = hist ->GetBinContent(bin);

double diff = abs(content - halfpeak);

if(mindiff > diff) {

mindiff = diff;

left_halfpeak = content;

xleft = x;

}

}

}

cout << "Left Half -Peak: (x=" << xleft

<< ",y=" << left_halfpeak << ")"

<< endl;

return xleft;

}

// Finds the right x value for the half -peak.

double deltat_halfpeak_right_x(TH1D* hist)

{

// can’t be negative so -1 makes a good default

double xright = -1;

double right_halfpeak = 0;

double mindiff = 1e9;

const double halfpeak = 0.5* deltat_peak_y(hist);

long nbins = hist ->GetNbinsX ();

// Traverse from right to left

7

for(int bin = nbins; bin >= 1; --bin) {

double x = hist ->GetXaxis()->GetBinCenter(bin);

if(1e-5 < x) { // stay right of 0 bin

double content = hist ->GetBinContent(bin);

double diff = abs(content - halfpeak);

if(mindiff > diff) {

mindiff = diff;

right_halfpeak = content;

xright = x;

}

}

}

cout << "Right Half -Peak: (x=" << xright

<< ",y=" << right_halfpeak << ")"

<< endl;

return xright;

}

• Due to the large number of points you need to sample the ADC m value at, it is best to define
a function for calculating the ADC histogram for each cut; for example,

TH1D* pointcut_left_adc(TChain* tree ,

// center of delta t / 2 cut

double cut_center ,

// width of delta t / 2 cut

double cut_width)

{

double cut_low = cut_center - 0.5* cut_width;

double cut_high = cut_center + 0.5* cut_width;

double adc_l;

tree ->SetBranchAddress("adc_l",&adc_l);

double tdc_l;

tree ->SetBranchAddress("tdc_l",&tdc_l);

double tdc_r;

tree ->SetBranchAddress("tdc_r",&tdc_r);

TH1D* hist = new TH1D("hist","hist" ,4001 , -0.5 ,4000.5);

int nrows = tree ->GetEntries ();

for(int i = 0; i < nrows; i++) {

tree ->GetEvent(i);

double deltat_over_2 = 0.5*(tdc_l - tdc_r);

if((cut_low <= deltat_over_2) &&

(cut_high <= deltat_over_2)) {

hist ->Fill(adc_l);

8

}

}

return hist;

}

You can copy and modify this function to have another function for cutting on the right ADC
values.

• In the same spirit as the other labs, here is a function for fitting a histogram against a Landau
distribution:

// Landau fit function. Returns the central (MPV) value

double fit_landau(TH1D* hist)

{

TF1* landau

= new TF1("landau",

"[0]* TMath:: Landau(x,[1] ,[2])",

0.5, //to protect against non -physical peak

4000);

//Guess at normalization

landau ->SetParameter (0,hist ->GetMaximum ());

//Guess at MPV:

landau ->SetParameter (1 ,1000);

//and sigma:

landau ->SetParameter (2,1);

hist ->Fit(landau);

return landau ->GetParameter (1);

}

I’ll leave it to you to define one for the exponential function.

• A data type that would be extremely useful to your tasks is the TGraph. TGraphs support
scatter plots, and can be fitted and drawn in the same way as histograms. The following code
shows how to use a TGraph:

//A graph is just a pair of arrays , one

//for the X values and one for the Y

// values. So , if we had data in these:

double xs[5] = {1., 2., 3., 4., 5.};

double ys[5] = {1., 4., 9., 16., 25.};

//we could create a TGraph like this:

TGraph graph(5,xs,ys);

//and then draw it. Note the special draw

// options "A*" for plotting as points

9

graph ->Draw("A*");

//or fit it with a parabola

graph ->Fit("pol2");

So, if you were to collect your N versus m data in a graph you could directly fit it against
the exponential and plot it on the 2-D histogram plot.

• As a last bit of help, we needed a lot of headers for this lab’s code, so here is the header code
I needed when doing this lab:

#include <TMath.h>

#include <TLegend.h>

#include <TCanvas.h>

#include <TLine.h>

#include <TAxis.h>

#include <TTree.h>

#include <TChain.h>

#include <TFile.h>

#include <TH1D.h>

#include <TH2D.h>

#include <TF1.h>

#include <cmath >

#include <string >

#include <iostream >

using namespace std;

10

	Introduction
	Finding the Source
	Effective Speed of Light
	Determining the Attenuation Length

	Lab Tasks
	Helpful Information

