LabVIEW Lesson 2 - Modular Programming

Lesson Overview

I. What is a subVI?
II. How to prepare a VI to be a subVI.
a. Editing VI icon.
b. Assembling connector pane.
III. How to incorporate a subVI into another VI.
I. What is a subVI?
a. AVI (LabVIEW program) that is used within another VI .
b. The subVI maybe inserted into the block diagram of another VI.
c. When inserted into another VI , the icon created for the subVI will appear with the corresponding inputs and outputs.
d. The front panel and block diagram of a subVI may be accessed by doubleclicking on the subVI icon.
II. Preparing a VI to be a subVI:

- EXAMPLE 2.1: Create new C to F converter VI
a. This VI will receive an input temperature in degrees Celsius and output the corresponding temperature in degrees Fahrenheit.
b. Beginning with the Front Panel,
i. Insert one Numerical Control and one Numerical Indicator (reference Lesson 1, Ex. 1.1 for inserting procedure).
ii. Rename the Numerical Control "Deg C" and the Numerical Indicator "Deg F".
c. Ctrl-E to switch to the Block Diagram
i. Insert a Multiplication Function ${ }^{\star}$ by ...
- Left-Click on Arith/Compare \rightarrow Numeric \rightarrow Multiply \rightarrow Front Panel
ii. Insert a Addition Function ${ }^{\perp}$ by ...
- Left-Click on Add \rightarrow Block Diagram to place the Add Function (this function is in the same palette as the multiplication function).
iii. Wire the Input (Deg C) to an Input Terminal on the Multiplication Function triangle by ...
- Select the Wire Icon from the Tools Palette \rightarrow Left-Click on the Deg C Terminal \rightarrow one of the Multiplication Function Terminals (wire will turn orange when connected).
iv. Wire the Output from the Multiplication Function to the Top Input Terminal of the Add Function.
v. Wire the Output from the Add Function to the output Deg F Terminal.
vi. Create Numerical Constants connected to the Multiplication and Add Functions by ...

1. With the wiring option selected, Right-Click on the Multiplication Function \rightarrow Left-Click on Create \rightarrow Constant (will create a textbox connected to the bottom terminal)
2. Type in 1.8 and press Enter.
3. Do the same for the Add Function, except enter 32.
4. Since 32 is an integer and this constant will always be an integer, Right-Click on $\mathbf{3 2} \rightarrow$ Left-Click on Representation \rightarrow Left-Click on I32, which stands for a 32-bit integer and should turn the box and wiring blue.
vii. NOTE: Delete wires by selecting them and pressing Del button on keyboard.
viii. Check if the VI is complete by ..

- Observing whether a Broken Arrow 包 or a Solid Arrow Δ is displayed at the top left on either the Front Panel or the Block Diagram.
- A Broken Arrow indicates that an error is present or everything is not wired correctly.
- A Solid Arrow Δ indicates that the VI is completed and ready to run.
ix. The VI should look similar to Figures 2.1 and 2.2 on top of the next page:

Figure 2.1: Front Panel for Celsius to Fahrenheit VI

Figure 2.2: Block Diagram for Celsius to Fahrenheit VI
d. Editing the VI icon (First step to prepare a VI to be a subVI)
i. Right-Click on the icon in the upper right-hand corner of the Front Panel \rightarrow Edit Icon (will bring up the icon editing window).

Figure 2.3: Icon Editor Window
ii. Clear the default icon design by ...

- Click On \rightarrow Draw a box around everything Except the black border \rightarrow Del Button to clear the contents in the box
iii. Create new icon as shown above (use the Text Control A to create a C and an F as well as the arrow, which is just a dash and the greater than sign) and click OK.
e. Connecting I/O's to the icon (Enables VI to be used in another VI or as a subVI.)
i. Right-Click on the Icon \rightarrow Show Connector (will change the icon to a box divided into 2 rectangles).
ii. Left-side boxes correspond to inputs and the right-side boxes correspond to outputs (number of boxes will depend on the number of inputs and outputs).
iii. Connect input to input and output to output by ...
- Left-Click on an input box and then on an input in the Front Panel (box should turn orange for numerical controls/indicators in double format, blue for integer format, and green for Boolean operators) \rightarrow Repeat for the output.
iv. The connector pane should look as follows (both boxes should be orange):
f. Save VI as CtoF.VI and then, Close the VI. (The VI can now be used as a subVI.)
III. Incorporating a subVI into a new VI

- EXAMPLE 2.2: Creating a Temperature Converter VI

a. This VI will accept an input temperature of user's choice with the input temperature scale being identified by the user, and the corresponding temperature in degrees Fahrenheit will be returned.
b. Beginning with the Front Panel,
i. Insert one Numerical Control and one Numerical Indicator (reference Lesson 1, Ex. 1.1 for inserting procedure).
ii. Insert a Boolean Switch by ...

- Go to the Controls Palette \rightarrow Left-Click on Buttons \rightarrow Vertical Toggle Switch \xrightarrow{q} Front Panel
iii. Rename the Numerical Control "Input Temp", Boolean Switch "Input Temp Scale", and Numerical Indicator "Output Temp Deg F"
iv. Additionally, add text next to the Boolean Switch as shown in Figure 2.4 below by Left-Clicking where you want the text and typing it in.

Figure 2.4: Labeling of Toggle Switch
v. If you would like more practice with aligning objects on the Front Panel, Align Left Edges of the new text to give the Front Panel a more polished appearance.
c. Ctrl-E to switch to the Block Diagram
i. Insert a Comparison Function by ...

- Left-Click on Arith/Compare in the Functions Palette \rightarrow Comparison \rightarrow Select \rightarrow Block Diagram
ii. Insert a SubVI "CtoF.VI" by ...
- Left-Click All-Functions in the Functions Palette \rightarrow Select a VI (bottom row first column) \rightarrow CtoF.VI \rightarrow Front Panel (The icon we just created should show up with two terminals.)
iii. Wire the Toggle Switch terminal to the Select Function at its green terminal (should be the middle terminal on its left side)

1. NOTE: All wiring is color coded based on the following information:

Wire Type	Scalar	1D Array	2D Array	Color
Numeric	-	-	$=$	Orange (floating-point), Blue (integer)
Boolean	-	-	$=$	
String				

iv. Wire the Input Temp first to the Input Terminal of the SubVI and secondly, branch off from this wire to the Bottom Terminal of the Select Function.
v. Wire the Output from the SubVI to the Top Terminal of the Select Function.
vi. Wire the Output from the Select Function to Output Temp Deg F Terminal.
vii. NOTE: You can clean up your wiring by Right-Clicking on the wires and select Clean Up Wire.
viii. The Arrow at the top of the window should now be Solid \Rightarrow and your VI should look something like Figures 2.5 and 2.6 on the next page (except without one of the outputs on the block diagram, which will be introduced shortly):

Figure 2.5: Front Panel for the Temperature Converter VI

Figure 2.6: Block Diagram for the Temperature Converter VI
ix. To test the VI, type in $\mathbf{1 0 0}$ with the switch in the Deg C location and run the VI. The output should read 212 F. If you change the switch to Deg F and run, the output should read 100 F .
d. Adding an input and using the Replace operation.
i. Hold down CtrI-E \rightarrow Left-Click on the Numerical Indicator \rightarrow Drag to the right and place on the front panel.
ii. Right-Click on the Numerical Indicator just created \rightarrow Replace \rightarrow Num Inds \rightarrow Thermometer
iii. Now there is a digital indicator and a thermometer to represent the output temperature (as shown in Figure 2.7).

Figure 2.7: Front Panel of Temperature Converter VI with Thermometer
iv. Rename the Thermometer to "Output Temp Deg F".
v. Edit thermometer scale by ...

- Right-Click on Thermometer \rightarrow Format \& Precision \rightarrow Scale Tab \rightarrow Enter "212" for Max and "-40" for Min \rightarrow OK
- Another way to change the scale, is to use the Finger Tool $\sqrt{3}$, and Left-Click on the top number (should be 100) and type in 212 and then do the same for the bottom, except type in $\mathbf{- 4 0}$.
vi. Switch to the block diagram and Wire the Thermometer branching off the other output wire.
e. Editing the VI icon
i. Right-Click on the icon in the upper right-hand corner of the Front Panel \rightarrow Edit Icon (will bring up the icon editing window).

Figure 2.8: Icon Editor Window with Thermometer Icon
ii. Clear the default icon design by ...

- Click On \rightarrow Draw a box around everything EXCEPT the black border \rightarrow Del Button to clear the contents in the box
iii. Create new icon as shown above and click OK.
f. Connecting I/O's to the icon
i. Right-Click on the Icon \rightarrow Show Connector (will change the icon to a box divided into 4 squares).
ii. Left-side boxes correspond to inputs and the right-side boxes correspond to outputs (number of boxes will depend on the number of inputs and outputs).
iii. Connect input to input and output to output by ...
a. Left-Click on an input box and then on an input in the Front Panel (box should turn orange for the numerical control and green for the Boolean switch) \rightarrow Repeat for all inputs and outputs.
iv. Lastly, depending on the application, you may not want all the inputs or outputs to be available when used as a subVI. The number of inputs and outputs can be altered by changing the pattern of the Connector Pane. To do this, Right-Click on Connector Pane \rightarrow Patterns \rightarrow choose the pattern desired. You can also Right-Click on a specific terminal and choose Add Terminal or Remove Terminal. The menu will be similar to what is shown in Figure 2.9:

Figure 2.9: SubVI Terminal Patterns
g. Save VI as TempConv.VI.

