Effective Operator for Double-Beta Decay

J. Engel

May 15, 2008

Fiorignone-Fest ’08
Usefulness of $\beta\beta$ Decay

Rate proportional to square of “effective neutrino mass”

$$m_{\text{eff}} \equiv \sum_i m_i U_{ei}^2$$
Usefulness of $\beta\beta$ Decay

Rate proportional to square of “effective neutrino mass”

$$m_{\text{eff}} \equiv \sum_i m_i U_{ei}^2$$

If lightest neutrino is light:
Usefulness of $\beta\beta$ Decay

Rate proportional to square of “effective neutrino mass”

\[m_{\text{eff}} \equiv \sum_i m_i U_{ei}^2 \]

If lightest neutrino is light:

\[m_{\text{eff}} \approx \sqrt{\Delta m^2_{\text{sol}}} \sin^2 \theta_{\text{sol}} \quad \text{(normal)} \]
Usefulness of $\beta\beta$ Decay

Rate proportional to square of “effective neutrino mass”

$$m_{\text{eff}} \equiv \sum_i m_i U_{ei}^2$$

If lightest neutrino is light:

- $m_{\text{eff}} \approx \sqrt{\Delta m_{\text{sol}}^2 \sin^2 \theta_{\text{sol}}} \quad \text{(normal)}$
- $m_{\text{eff}} \approx \sqrt{\Delta m_{\text{atm}}^2 \cos 2\theta_{\text{sol}}} \quad \text{(inverted)}$
Usefulness of $\beta\beta$ Decay

Rate proportional to square of “effective neutrino mass”

\[m_{\text{eff}} \equiv \sum_i m_i U_{ei}^2 \]

If lightest neutrino is light:

- \(m_{\text{eff}} \approx \sqrt{\Delta m_{\text{sol}}^2 \sin^2 \theta_{\text{sol}}} \) (normal)
- \(m_{\text{eff}} \approx \sqrt{\Delta m_{\text{atm}}^2 \cos 2\theta_{\text{sol}}} \) (inverted)
Usefulness of $\beta\beta$ Decay

Rate proportional to square of “effective neutrino mass”

$$m_{\text{eff}} \equiv \sum_i m_i U_{ei}^2$$

If lightest neutrino is light:

- $m_{\text{eff}} \approx \sqrt{\Delta m_{\text{sol}}^2 \sin^2 \theta_{\text{sol}}} \quad \text{(normal)}$
- $m_{\text{eff}} \approx \sqrt{\Delta m_{\text{atm}}^2 \cos 2\theta_{\text{sol}}} \quad \text{(inverted)}$
Usefulness of $\beta\beta$ Decay

Rate proportional to square of “effective neutrino mass”

$$m_{\text{eff}} \equiv \sum_i m_i U_{ei}^2$$

If lightest neutrino is light:

- $m_{\text{eff}} \approx \sqrt{\Delta m_{\text{sol}}^2} \sin^2 \theta_{\text{sol}}$ (normal)
- $m_{\text{eff}} \approx \sqrt{\Delta m_{\text{atm}}^2} \cos 2\theta_{\text{sol}}$ (inverted)
The Rate

Rate depends on nuclear stuff as well as m_{eff}:

$$T_{1/2}^{0\nu} = \sum_{\text{spins}} \int |Z_{\nu}|^2 \delta(E_{\nu 1} + E_{\nu 2} - Q_{\beta\beta}) \frac{d^3 p_1}{2\pi^3} \frac{d^3 p_2}{2\pi^3}$$
The Rate

Rate depends on nuclear stuff as well as m_{eff}:

$$T_{1/2}^{0\nu} = \sum_{\text{spins}} \int |Z_{0\nu}|^2 \delta(E_{e1} + E_{e2} - Q_{\beta\beta}) \frac{d^3p_1}{2\pi^3} \frac{d^3p_2}{2\pi^3}$$

Neglecting the induced-pseudoscalar term and momentum dependence in the weak nucleonic current, and summing over intermediate states in closure (a good approximation) gives

$$Z_{0\nu} \propto M_{0\nu}^{GT} - \frac{g_V^2}{g_A^2} M_{0\nu}^F$$
The Rate

Rate depends on nuclear stuff as well as m_{eff}:

$$T_{1/2}^{0\nu} = \sum_{\text{spins}} \int |Z_{0\nu}|^2 \delta(E_{e1} + E_{e2} - Q_{\beta\beta}) \frac{d^3p_1}{2\pi^3} \frac{d^3p_2}{2\pi^3}$$

Neglecting the induced-pseudoscalar term and momentum dependence in the weak nucleonic current, and summing over intermediate states in closure (a good approximation) gives

$$Z_{0\nu} \propto M_{0\nu}^{GT} - \frac{g_V^2}{g_A^2} M_{0\nu}^F$$

with

$$M_{0\nu}^F = \langle f | \sum_{a,b} H(r_{ab}, E) \tau_a^+ | i \rangle, \quad M_{0\nu}^{GT} = \langle f | \sum_{a,b} H(r_{ab}, E) \vec{\sigma}_a \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ | i \rangle$$

$$H(r, E) \approx \frac{2R}{\pi r} \int_0^\infty dq \frac{\sin qr}{q + E - (E_i + E_f)/2}$$
Calculating the Matrix Elements

This is hard to calculate because

- Relevant nuclei are heavy (e.g. $^{136}\text{Xe} \rightarrow ^{136}\text{Te}$) and/or complicated (e.g. $^{76}\text{Ge} \rightarrow ^{76}\text{Se}$).
Calculating the Matrix Elements

This is hard to calculate because

- Relevant nuclei are heavy (e.g. $^{136}\text{Xe} \rightarrow ^{136}\text{Te}$) and/or complicated (e.g. $^{76}\text{Ge} \rightarrow ^{76}\text{Se}$).
- No controlled approximation schemes for nuclei with $A > 12$.
Calculating the Matrix Elements

This is hard to calculate because

- Relevant nuclei are heavy (e.g. $^{136}\text{Xe} \rightarrow ^{136}\text{Te}$) and/or complicated (e.g. $^{76}\text{Ge} \rightarrow ^{76}\text{Se}$).
 No controlled approximation schemes for nuclei with $A > 12$

- No measured neutrinoless decays with which to calibrate.
Calculating the Matrix Elements

This is hard to calculate because

- Relevant nuclei are heavy (e.g. $^{136}\text{Xe} \rightarrow^{136}\text{Te}$) and/or complicated (e.g. $^{76}\text{Ge} \rightarrow^{76}\text{Se}$).
- No controlled approximation schemes for nuclei with $A > 12$.
- No measured neutrinoless decays with which to calibrate.
- M_{fi} sensitive to delicate two-body space/spin correlations.
Calculating the Matrix Elements

This is hard to calculate because

- Relevant nuclei are heavy (e.g. 136Xe $\rightarrow ^{136}$Te) and/or complicated (e.g. 76Ge $\rightarrow ^{76}$Se).
- No controlled approximation schemes for nuclei with $A > 12$
- No measured neutrinoless decays with which to calibrate.
- M_{fi} sensitive to delicate two-body space/spin correlations.
- Most of the operator’s strength is to excited states in the final nucleus.
Lots done since 1987

<table>
<thead>
<tr>
<th>Protons</th>
<th>Neutrons</th>
<th>QRPA</th>
<th>Shell Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lots done since 1987

- Most in **neutron-proton QRPA** (quasiparticle random-phase approximation).
Existing Calculations

Lots done since 1987

- Most in **neutron-proton QRPA** (quasiparticle random-phase approximation).
- A few in the **shell model**
Lots done since 1987

- Most in **neutron-proton QRPA** (quasiparticle random-phase approximation).
- A few in the **shell model**

QRPA vs. Shell Model:
Existing Calculations

Lots done since 1987
- Most in **neutron-proton QRPA** (quasiparticle random-phase approximation).
- A few in the **shell model**

QRPA vs. Shell Model:

```
protons

neutrons
```
Existing Calculations

Lots done since 1987

- Most in **neutron-proton QRPA** (quasiparticle random-phase approximation).
- A few in the **shell model**

QRPA vs. Shell Model:

Protons

Neutrons

Large single-particle space; simple correlations within it.
Existing Calculations

Lots done since 1987

- Most in **neutron-proton QRPA** (quasiparticle random-phase approximation).
- A few in the **shell model**

QRPA vs. Shell Model:

- Large single-particle space; simple correlations within it.
Existing Calculations

Lots done since 1987

- Most in *neutron-proton QRPA* (quasiparticle random-phase approximation).
- A few in the *shell model*

QRPA vs. Shell Model:

Large single-particle space; simple correlations within it.
Existing Calculations

Lots done since 1987
- Most in **neutron-proton QRPA** (quasiparticle random-phase approximation).
- A few in the **shell model**

QRPA vs. Shell Model:

Small single-particle space; arbitrarily complex correlations within it.
Both methods involve adjusting Hamiltonian to compensate for missing pieces of wave function.
Both methods involve adjusting Hamiltonian to compensate for missing pieces of wave function.

- QRPA uses “G-matrix” interaction, adjusts strengths in particular channels to reproduce 2ν decay, pairing gaps, single-beta decay and beta-strength functions.
Both methods involve adjusting Hamiltonian to compensate for missing pieces of wave function.

- **QRPA** uses “G-matrix” interaction, adjusts strengths in particular channels to reproduce 2ν decay, pairing gaps, single-beta decay and beta-strength functions.

- **Shell model** adjusts monopole part of microscopically derived interaction to fit binding energies, spectra.
Some QRPA Tuning...

\[
M^{2\nu}_{\nu} (\text{MeV}^{-1})
\]

\[
M^{0\nu}_{\nu}
\]

\[
g_{pp}
\]

- 9 levels
- 21 levels

Some QRPA Tuning...
Results can differ by factor of 2 or more

Shell-Model vs. QRPA Results
Shell-Model vs. QRPA Results

Results can differ by factor of 2 or more

But the decay operator should be adjusted alongside the Hamiltonian if the wave function is incomplete
Shell-Model vs. QRPA Results

Results can differ by factor of 2 or more

But the decay operator should be adjusted alongside the Hamiltonian if the wave function is incomplete

So far, adjustments are purely phenomenological:

- g_A sometimes set to 1,
- short-range correlations included via a prescription.
Effective Decay Operator for Shell Model

Bloch-Horowitz Equation

\[
H_{\text{eff}} = PHP + PHQ \frac{1}{E - QHP} QHP
\]

\[
P = \sum_{i \in \text{SM space}} |i\rangle\langle i| \quad Q = \sum_{\text{other } i} |i\rangle\langle i|
\]
Effective Decay Operator for Shell Model

Bloch-Horowitz Equation

\[H_{\text{eff}} = PHP + PHQ \frac{1}{E - QH} QHP, \quad |\Psi\rangle = \mathcal{N} \left[P|\Psi\rangle + \frac{1}{E - QH} Q|\Psi\rangle \right] \]

\[P = \sum_{i \in \text{SM space}} |i\rangle \langle i| \quad \quad Q = \sum_{\text{other } i} |i\rangle \langle i| \]
Effective Decay Operator for Shell Model

Bloch-Horowitz Equation

\[
H_{\text{eff}} = PHP + PHQ \frac{1}{E - QH} QHP, \quad |\Psi\rangle = \mathcal{N} \left[P|\Psi\rangle + \frac{1}{E - QH} Q|\Psi\rangle \right]
\]

\[
P = \sum_{i \in \text{SM space}} |i\rangle \langle i| \quad Q = \sum_{\text{other } i} |i\rangle \langle i|
\]

\[
H_{\text{eff}}(E_a) P|\Psi_a\rangle = E_a P|\Psi_a\rangle
\]
Effective Decay Operator for Shell Model

Bloch-Horowitz Equation

\[H_{\text{eff}} = PHP + PHQ \frac{1}{E - QH} QHP, \quad |\Psi\rangle = \mathcal{N} \left[P|\Psi\rangle + \frac{1}{E - QH} Q|\Psi\rangle \right] \]

\[P = \sum_{i \in \text{SM space}} |i\rangle\langle i| \quad \text{and} \quad Q = \sum_{\text{other } i} |i\rangle\langle i| \]

\[H_{\text{eff}}(E_a) P |\Psi_a\rangle = E_a P |\Psi_a\rangle \quad \frac{\langle \Psi_a | P M_{\text{eff}}^P |\Psi_b\rangle}{\sqrt{\langle \Psi_a | P |\Psi_a\rangle \langle \Psi_b | P |\Psi_b\rangle}} = \langle \Psi_a | M |\Psi_b\rangle \]
Effective Decay Operator for Shell Model

Bloch-Horowitz Equation

\[
H_{\text{eff}} = PHP + PHQ \frac{1}{E - QH} QHP, \quad |\Psi\rangle = \mathcal{N} \left[P|\Psi\rangle + \frac{1}{E - QH} Q|\Psi\rangle \right]
\]

\[
P = \sum_{i \in \text{SM space}} |i\rangle\langle i| \quad Q = \sum_{\text{other } i} |i\rangle\langle i|
\]

\[
H_{\text{eff}}(E_a)P|\Psi_a\rangle = E_a P|\Psi_a\rangle \quad \frac{\langle \Psi_a | P \mathcal{M}^{\text{eff}} P | \Psi_b \rangle}{\sqrt{\langle \Psi_a | P | \Psi_a \rangle \langle \Psi_b | P | \Psi_b \rangle}} = \langle \Psi_a | \mathcal{M} | \Psi_b \rangle
\]

Formulation as Rayleigh-Schrödinger perturbation theory

- replaces \(E \) by unperturbed (single-particle) energy
Effective Decay Operator for Shell Model

Bloch-Horowitz Equation

\[H_{\text{eff}} = PHP + PHQ \left(\frac{1}{E - QH} QHP \right), \quad |\Psi\rangle = \mathcal{N} \left[P|\Psi\rangle + \frac{1}{E - QH} Q|\Psi\rangle \right] \]

\[P = \sum_{i \in \text{SM space}} |i\rangle\langle i| \quad Q = \sum_{\text{other } i} |i\rangle\langle i| \]

\[H_{\text{eff}}(E_a)P|\Psi_a\rangle = E_a P|\Psi_a\rangle \quad \frac{\langle \Psi_a |PM_{\text{eff}}^{\text{eff}} P|\Psi_b\rangle}{\sqrt{\langle \Psi_a |P|\Psi_a\rangle \langle \Psi_b |P|\Psi_b\rangle}} = \langle \Psi_a |\mathcal{M}|\Psi_b\rangle \]

Formulation as Rayleigh-Schrödinger perturbation theory

- replaces \(E \) by unperturbed (single-particle) energy
- leads to diagrammatic series for energy and matrix elements of other operators
Define G matrix by iterated sum over high-lying “two-particle” states:

$$G = V + \frac{V}{V} + \ldots$$
Define G matrix by iterated sum over high-lying “two-particle” states:

$$G = V + V V + \ldots$$

Then expand in G to get the effective interaction H_{eff}:

$$H_{\text{eff}}$$
By analogy, define a $\beta\beta$ operator that includes high-energy stuff — all ladders in V with one insertion of \mathcal{M}:

\[
\mathcal{M}_{\text{high}} = \mathcal{M} + \mathcal{G} + \mathcal{M} + \mathcal{G} + \mathcal{M}
\]
By analogy, define a $\beta\beta$ operator that includes high-energy stuff — all ladders in V with one insertion of \mathcal{M}:

$$\mathcal{M}_{\text{high}} = \mathcal{M} + \mathcal{M}G + \mathcal{M}G + \mathcal{M} + \ldots$$

Then expand in G to get full effective operator \mathcal{M}_{eff}:
Note that you generate effective operator \mathcal{M}_{eff} by replacing G (\includegraphics[width=1cm]{G}) with $G + \epsilon\mathcal{M}$ (\includegraphics[width=1cm]{G_epsilon}) and working to first order in ϵ.

$\mathcal{M}_{\text{high}}$ and many of the diagrams in which it enters can be obtained from Morten Hjorth-Jensen’s effective interaction code by using this trick on the corresponding diagrams for the effective Hamiltonian.
So far: diagrams in $0f_{5/2}, 1p, 0g_{9/2}$ model space with shell model transition densities for ^{82}Se from Poves et al.
So far: diagrams in $0f_{5/2}, 1p, 0g_{9/2}$ model space with shell model transition densities for ^{82}Se from Poves et al.

<table>
<thead>
<tr>
<th>Low-E border</th>
<th>Bare</th>
<th>High-E Ladders</th>
<th>All Ladders</th>
<th>$+ 4p-2h$</th>
<th>$+ 3p-1h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6\hbar\omega$</td>
<td>3.33</td>
<td>3.17</td>
<td>3.87</td>
<td>4.65</td>
<td>4.44</td>
</tr>
</tbody>
</table>
So far: diagrams in $0f_{5/2}, 1p, 0g_{9/2}$ model space with shell model transition densities for ^{82}Se from Poves et al.

<table>
<thead>
<tr>
<th>$\hbar\omega$</th>
<th>low-E border</th>
<th>bare</th>
<th>high-E ladders</th>
<th>all ladders</th>
<th>+ 4p-2h</th>
<th>+ 3p-1h</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6\hbar\omega$</td>
<td>3.33</td>
<td>3.17</td>
<td>3.87</td>
<td>4.65</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>$7\hbar\omega$</td>
<td>3.33</td>
<td>3.10</td>
<td>3.83</td>
<td>4.59</td>
<td>4.39</td>
<td></td>
</tr>
</tbody>
</table>
So far: diagrams in $0 f_{5/2}, 1p, 0 g_{9/2}$ model space with shell model transition densities for ^{82}Se from Poves et al.

<table>
<thead>
<tr>
<th>M_{GT}</th>
<th>low-E border</th>
<th>bare</th>
<th>high-E ladders</th>
<th>all ladders</th>
<th>+ 4p-2h</th>
<th>+ 3p-1h</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6\hbar\omega$</td>
<td>3.33</td>
<td>3.17</td>
<td>3.87</td>
<td>4.65</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>$7\hbar\omega$</td>
<td>3.33</td>
<td>3.10</td>
<td>3.83</td>
<td>4.59</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td>$8\hbar\omega$</td>
<td>3.33</td>
<td>3.09</td>
<td>src</td>
<td>3.85</td>
<td>4.61</td>
<td>—</td>
</tr>
</tbody>
</table>
So far: diagrams in $0f_{5/2}, 1p, 0g_{9/2}$ model space with shell model transition densities for ^{82}Se from Poves et al.

<table>
<thead>
<tr>
<th>$\hbar\omega$</th>
<th>low-E border</th>
<th>bare</th>
<th>high-E ladders</th>
<th>all ladders</th>
<th>+ 4p-2h</th>
<th>+ 3p-1h</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6\hbar\omega$</td>
<td>3.33</td>
<td>3.17</td>
<td>3.87</td>
<td>4.65</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>$7\hbar\omega$</td>
<td>3.33</td>
<td>3.10</td>
<td>3.83</td>
<td>4.59</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td>$8\hbar\omega$</td>
<td>3.33</td>
<td>3.09</td>
<td>3.85</td>
<td>src</td>
<td>4.61</td>
<td>—</td>
</tr>
</tbody>
</table>

Full Matrix Element (no forbidden terms)

- Bare: 3.78
- With all first-order diagrams: 5.07
- Caurier et al.: 2.49*
- QRPA ($g_A = 1.25$): ≈ 6

* strong short-range correlations
Effective Operator in Simple Pairing Model

\[M_{0v} (\text{fm}^{-1}) \]

\[\varepsilon = 10G \]

\[\varepsilon = 20G \]
Conclusions

- Can carry this approach to higher order. Complete calculation at next order would be straightforward.
Conclusions

- Can carry this approach to higher order. Complete calculation at next order would be straightforward.
- Ultimate answer will probably require nonperturbative treatment. But that’s not as far off as it used to be.