PHYS 503 Test 2

October, 2016

*Asterisked sections are for graduate students only.

1. [10 points]

Find the gravitational force on a mass m at a radius r inside a uniform spherical shell of mass M and with inner and outer radii R_{1}, and R_{2}, respectively.
2. [20 points]

A string of length ℓ has a mass m at each end, and passes through a hole in a horizontal frictionless table. One mass moves horizontally on the table, while the other hangs vertically downwards; see the figure. Note that the hanging mass does not oscillate like a pendulum.
(a) Write down the Lagrangian for this system.
(b) Find the Euler-Lagrange equations of motion.
(c) Find expressions for the generalized momenta.
(d) Find the Hamiltonian for the system.
*(e) Does H equal the total energy of the system? Explain.
*(f) Are H and the generalized momenta constants of motion?

\#1)

Oct. 2016

Without loss of generality, we use the symmetry to place m on the z-axis. Consider a ring of mass at a polar angle θ^{\prime}. The potential due to this ring at $r^{i}=h_{2}$ is given by

$$
\begin{aligned}
& d \Phi(z=r)=G \int_{r^{\prime}=R_{1}}^{r^{\prime}=R_{2}} \rho^{2 \pi} \frac{\left(r^{\prime 2} \sin \theta^{\prime}\right) d \theta^{\prime} d r^{\prime}}{\sqrt{r^{\prime 2} \sin ^{2} \theta^{\prime}+\left(r-r^{\prime} \cos \theta^{\prime}\right)^{2}}} \\
& =G 2 \pi \rho d\left(\cos \theta^{\prime} \int_{r^{\prime}=R_{1}}^{r^{\prime}=R_{2}} d r^{\prime} \frac{r^{\prime 2}}{\sqrt{r^{\prime 2}+r^{2}-2 r r^{\prime} \cos \theta^{\prime}}}\right.
\end{aligned}
$$

Integrating over θ^{\prime} gives the potential:

$$
\begin{aligned}
& \Phi(z=r)=G 2 \pi \rho \int d r^{\prime} r^{r^{2}} \frac{d\left(\cos \theta^{\prime}\right)}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta}} \\
& =\left.G 2 \pi \rho \int r^{\prime 2} d r^{\prime} \sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta}\left(\frac{2}{\left(-2 r r^{\prime}\right)}\right)\right|_{\cos \theta^{\prime}=-1} ^{\cos \theta^{\prime}=R_{2}} \\
& =2 \pi \rho G \int r^{\prime 2} d r^{\prime}\left\{(-r+r)-\left(r+r^{\prime}\right)\right\}\left(-\frac{1}{r r^{\prime}}\right) \\
& =4 \pi \rho G\left(\frac{\left.R_{2}^{2}-R_{1}^{2}\right)}{2}=\right. \\
& \vec{F}=-m \vec{\nabla} \Phi \quad \text { constant. } \\
& =\vec{F}=0 .
\end{aligned}
$$

\#2)

$$
\begin{aligned}
& T=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \cdot \dot{\theta}^{2}\right)+\frac{m}{2} \dot{r}^{2}=m \dot{r}^{2}+\frac{m v^{2} \dot{\theta}^{2}}{2} \\
& u=m g\{-(l-r)\}=-m g(l-r)
\end{aligned}
$$

(a) Thus, $L=T-U=m \dot{r}^{2}+\frac{m r^{2} \dot{\theta}^{2}}{2}+m g(l-r)$
(b) The Euler-Lagrange equations are
(i) $\stackrel{v}{=} \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \vec{r}}\right)=\frac{\partial L}{\partial v}$ i.e.,

$$
2 m \ddot{r}=m r \dot{\theta}^{2}-m g .
$$

(ii) $\theta: \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{\partial L}{\partial \theta}$

$$
\begin{array}{cr}
\frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=0 & \text { Let } m r^{2} \dot{\theta}=l \\
i-e \cdot, 2 m \dot{r} \dot{\theta}+m r^{2} \ddot{\theta}=0 . & \Rightarrow \dot{\theta}=\frac{l}{m r^{2}} .
\end{array}
$$

(c)

$$
\begin{aligned}
& p_{r}=\frac{\partial L}{\partial \dot{r}}=2 m \dot{r} \quad \Rightarrow \dot{r}=\frac{p_{r}}{2 m} \\
& p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta} \quad \Rightarrow \dot{\theta}=\frac{p_{\theta}}{m r^{2}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& H=p_{r} \cdot \bar{r}+p_{\theta} \dot{\theta}-L=2 m \dot{r}^{2}+m r^{2} \dot{\theta}^{2}-L \\
& =m \dot{r}^{2}+\frac{m r^{2} \dot{\theta}^{2}}{2}-m g(l-r) \\
& =m\left(\frac{p_{r}}{2 m}\right)^{2}+\frac{m r^{2}}{2}\left(\frac{p_{\theta}}{m r^{2}}\right)^{2}-m g(l-r) \\
& =\frac{p_{r}^{2}}{4 m}+\frac{p_{\theta}^{2}}{2 m r^{2}}-m g(l-r) \text {. }
\end{aligned}
$$

*(e) Yes, $H=E$ because the potential energy U does not depend on \dot{r} or on $\dot{\theta}$, and the transformations from (x, y) to (r, θ) do not explicitly depend on time.
*(f) $\frac{d t}{d t}=-\frac{\partial L}{\partial t}=0$. Thus, H is a constant of motion.
We saw earlier, in part (b), that $\frac{d}{d t} p_{\theta}=0$ and hence p_{θ} is a constant of motion.
However, $\frac{d}{d t} p_{r} \neq 0$ (also from part (b)) and hence p_{r} is not a constant of motion.

