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Abstract

Muon capture on the deuteron is studied in a framework that essentially incorporates heavy baryon chiral perturbation theory
(HBxPT). It is found that by far the dominant contributiongd capture comes from a region of the final three-body phase-
space in which the energy of the two neutrons is sufficiently small fox PIBto be applicable. The single unknown low-energy
constant having been fixed from the tritium beta decay rate, our calculation contains no free parameter. Our estimate of the
capture rate is consistent with the existing data. The relation betw@eapture and thed reactions, which are important for
the SNO experiments, is briefly discussed002 Elsevier Science B.V. All rights reserved.

PACS 12.39.Fe; 23.40.-s

1. Introduction

Electroweak processes in the two-nucleon systems invite detailed studies for multiple reasons. From the nuclear
physics point of view, these processes offer a valuable testing ground of the basic inputs of nuclear physics. In
astrophysics, the precise knowledge of thefusion cross section is of crucial importance for building a reliable
model for stellar evolution [1]. Furthermore, experiments at the Sudbury Neutrino Observatory (SNO) [2,3] to
observe solar neutrinos with a heavy-water Cerenkov counter have made it extremely important to estivdate the
reaction cross sections with high precision.

In this note we study:d capture;u™ +d — v, +n + n, in a formalism motivated by effective field theory
(EFT). Our work is connected to the above-mentioned urgent need of accurate estimatesiofithes sections,
oyq- To expound this connection, we will first explain the standard nuclear physics approach (SNPA), see, e.g.,
Ref. [4]. Thisis a highly successful method for describing nuclear responses to electroweak probes. In this approach
we consider one-body (1B) impulse approximation terms and two-body (2B) exchange-current terms acting on
non-relativistic nuclear wave functions, with the exchange currents derived from a one-boson exchange model.
The vertices in the relevant Feynman diagrams are obtained from a Lagrangian constructed to satisfy the low-
energy theorems and current algebra [5], while the nuclear wave functions are generated by soldutptlye
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Schrddinger equatiorH |W4) = E|W,), where the HamiltoniarH contains realistic phenomenological nuclear
potentials. The most elaborate studyuef capture based on SNPA was carried out by Tatara et al. (TKK) [6] and
by Adam et al. [7].

Now, the best available estimation 6f; based on SNPA is due to Nakamura et al. (NSGK) [8], while that
based on EFT is due to Butler, Chen, and Kong (BCK) [9]. Since EFT is a general framework [10], it can
give model-independent resulfgpvided all the low-energy coefficients (LEC) in the effective Lagrangiés,
are predeterminedCess considered by BCK, however, does contain one unknown parantetg), (which they
adjusted to reproducs,; obtained by NSGK. After this adjustment, the results of BCK are found to be in perfect
agreement with those of NSGK. The fact that an ab initio calculation (modulo one free parameter) based on EFT
reproduces,; of NSGK extremely well offers strong support to the calculation based on SNPA. At the same time,
it stresses the importance of carrying out an EFT calculation free from an adjustable parameter. An interesting
possibility is to useud capture data as input to control the unknown LEC. An immediate question, however, is
whether this process is “gentle” enough to be amenable to EFT. The substantial energy transfer accompanying
the disappearance of a muon can lead to a region of the final three-particle phase space in which the intrinsic
state of the two neutrons receives such a large momentum that the applicability of EFT becomes a delicate issue.
Let this unfavorable kinematical region be called the “dangerous” region. The problem of the dangerous region is
reminiscent of the difficulty one encounters in applying EFT to threshold pion producttémiiv — N + N +
[11-14]. It will turn out (see below), however, that, unlike the pion production gagezapture receives only a
tiny fraction of contribution from the dangerous region, and therefore the theoretical uncertainty caused by the
dangerous region is practically negligible.

The EFT calculation in [9] used the power divergence subtraction scheme (PDS) [15]. We employ here
a formalism in which the transition operators are derived from irreducible diagrams in heavy-baryon chiral
perturbation theory (HBPT), while the transition matrix elements are obtained with the use of the initial and
final nuclear wave functions obtained in SNPA. For convenience, we refer to this approach as EFT*. The use of
the SNPA wave functions causes some degree of deviation from genuine EFT but, as discussed in [16], EFT*
can nevertheless reduce the model-dependence of SNPA drastically. According to [16], a next-to-next-to-next-to-
leading order (NLO) calculation in EFT* contains one unknown LEC, denoted&‘é’y Like L14 discussed by
BCK, the parameted® controls the strength of a short-range exchange-current term andd8riseixed from
data, we can make a definite predictiondgy. We, therefore, investigate here the relation betw#&®and theud
capture rate] 4. Our study is essentially of exploratory nature, given the present limited accuracy (see below) of
the experimental value df,,.

Another important point concernintf is that, as emphasized in [16], the strengtld &fcan be reliably related
to the tritium g-decay rate,I“ﬂf. Thus, using the experimental value Bg, which is known with high precision,

one can determingé® and then proceed to make predictions on various two-nucleon weak-interaction processes,
including theud capture ratepp fusion rate, andd cross sections. We will present here the first estimate of the
ud capture rate obtained in this approach; faefusion rate has already been discussed in [16], angdh&oss
sections will be reported elsewhere [17].

2. Thecapturerate

Although ud capture can in principle occur from the twal hyperfine states$,;, = 1/2 andS,,;s = 3/2), the
capture is known to take place practically uniquely from the hyperfine doublet state. Therefore, concentrating on
this dominant capture, we refer to hyperfine-doublétcapture simply ag.d capture and denote the hyperfine-
doubletud capture rate by,q. The measured value dt.q is I'y," = 409+ 40 s°* [18] and I', " = 470+ 29

s~1[19]. We remark that a high-precision measurementof is being contemplated at PSI [20].
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Denoting byL the orbital angular momentum of the two-neutron relative motion in the final state, we can write

a= Y. Tk, 1)
L=0,1,2...

where F,fd is the rate ofud capture leading to thé state. Here we shall be primarily concerned Wlfjfrfo

since it is this quantity that contains information abdfit The contributions oﬂ“lfd (L > 1) are significant, but
their calculation is not expected to involve any major EFT-related issues. In general, due to the centrifugal force,
the L > 1 contributions cannot be too sensitive to short-range physics, which implies that chiral expansion for
them should converge rapidly. Specifically, the= 1 contributions are dominated by the axial-charge (AC) and
E1 transitions, whose one-body operators (which are NLO in chiral counting) are well known. The lowest order
meson-exchange corrections (MEC) to the one-body operators come from soft one-pion-exchange (OPE), which
is N2LO in chiral counting. These soft-OPE terms, dictated by chiral symmetry, are well known, and they are
model-independent. Fdr > 2 states, within the accuracy of our evaluation only one-body contributions [6] have
to be included. In our exploratory study, therefore, we concentrate on a detailed evalua‘t]ﬁﬁoofand forFMLd
(L > 1) we simply use the results obtained by Ref. [6].

Muon capture by the deuteron is effectively described by the current—current Hamiltonian of weak interactions

G - -
Hy = TZ/d% Ly(Z)J*X) +h.c, 2
where the leptonic and the hadronic charged currents are

Lo(E) =P (E)ya— y9) Y (E) and JOE) = (V¥ — A%)*THE) —i(V — A%)*2(3), 3)

respectively, andsy = 1.14939x 10> GeV 2 [21]; « (a) is the Lorentz (isospin) index. In the center-of-mass
system of the initiajx ~d atom from which capture occurs, we can safely assgme: p; = 0. Consequently, the
four-momentum transfer to the leptonic systef= (p, — pu)“, reads¢® g) = (E, — my, pv). Theud capture
amplitude is then given by

Gy

(fIHwli) = ﬁlpp.—d(a)laOpnn(_q’ 3 5152)17%(@)1Wa(sa)), (4)
where the Fourier-transformed currents are

@)= [ dEeiTe), (5)

le = €59 (0(pu, ) La ™ (P $0)) = i (Bus ) Ve (L= ¥8)tt (B, 810)- (6)

In Eq. (4), lI/M_d(f)) = 1/ﬁag/2 is the 1S wave function of theu™d atom, whereng = (m, + mg)/m, mqc,

with o >~ 1/137.036 the fine structure constahtZ, (s;) in Eq. (4) represents the deuteron wave function with the
z-component of its spis,; ¥, (—q, p; s1s2) represents the finaln wave function, with totahn momentum-g,
relativenn momentump = (p1 — p2)/2, and thez-components of the neutron sping,andss,. It is easy to obtain

_1Gy#©)P [ a% /d%
42Jua+1) J 2n)3 ) (2n)3

Jud

<Y Y [l @aal3. s L sal s Sua)

Slld =—Jya 51525u5d

T 2n8(AE)

2

: )

1 For example,I“ILLd:1 ~ % d according to Ref. [6].
2 The small correction due to the finite size of the deuteron is taken into account in the actual calculation.
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where J,s = 1/2, AE is the energy difference between the final and initial stafes= ¥,;(ss) and ¥, =
lpnn(_E]" ﬁ; 5152).

3. HBPT Lagrangian and the hadronic currents

To derive the transition operators, we adopt Weinberg’s counting rule. IpBthe leading order (LO)
Lagrangian is given by

— 1 — 2
Lo=Bliv-D+2igsS-AlB — 3 ZCA(BFAB)z + f2Tr(iAkiA,) + %Tr(X+) (8)
A

with
. . . . . .
Du=ut 5l6" 0u8] - 56 R - 568" Au=(e"0u8) + 56 R - SeL,8!

andy; =&"x£" +&x'&, whereR,, = 5 (V4 + A%) andL, = 5 (V4 — A?) denote the external gauge fields. In
the absence of the external scalar and pseudo—scalar;ti@d@%, and we define the pion field §s= exp(i %)

It is convenient to choose the four-velocity and the spin operat#* asv* = (1, 6) andS* = (0,0/2).

The next-to-leading-order (NLO) Lagrangian (including thé#iy” terms) in the one-nucleon sector is given
in [22] while that in the two-nucleon sector is given in [£2Fombining them, we can write the NLO Lagrangian
relevant to our case as

2

gV ouv
L= B(wDuDV ferTrys + (46‘2 - g—A>(v A £ AcgiA-iA
ZmN ZmN

+(zcﬁi)[swsqmmm—i“ce[swsﬂfﬁ)B

2my my
—4id1BS - ABBB + 2idpe®*e 350" A BS* 1" BBS t°B + - - -, (9)
where
.L.a
€0123=1, Ay = ?AZ,

;j;; = é(auﬁv - av‘cp. - i[E;u £v])‘§T + éT(auRv - ava. - i[R;u Rv])é
We find it convenient to use the dimensionless low-energy constarasdd’s defined by

1 ~ gA A
c1234=—"C1234,  di2= 5d1,2. (10)
my my

The values of these low energy constafis; 3 4, are taken from Ref. [22]:

¢1=-0.60£0.13 ¢2 =1.671+0.09, ¢3=—3.66+0.08, ¢4=2114+0.08 (11)

and cg = ky = 3.70. These values were determined at tree level (or NLO) in the one-nucleon sector, which
correspond to RLO in our two-nucleon calculation.

3 Our definition of the pion field differs from that used in Ref. [12] by a minus sign.
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3.1. The one-body currents

The one-body currents can be obtained either by an explicjt PiBcalculation or by the Foldy—Wouthuysen
(FW) reduction of the well-known relativistic expressions. The former method requires one-loop diagrams which
consist of vertices fronCo (for N°LO contributions) and those which contain one vertex fr6m(for N3LO
contributions); also needed are the corresponding counter-termf@nd L3. We adopt here the FW reduction
method for convenience. Since the range ef g2 = m,,(m, — 2E,) for ud capture is small{m2 <1 < m?),
the r-dependences in the standard form fact(ﬁrI‘éz(t) and G 4(¢), give only less than 2% effects, which can be
reliably taken into account by expansioryin ’

L
6

Keeping the terms linear inis consistent with HR PT to the order we calculate. Some caution is required for the
G p(t) term, which contains the pion-pole contributions,

GP(AII) E/B(t)szGA(t)

FY()=1+ %r% +0@1?),  F(0=kv+0@1), Gat)=ga <1+ ra+ O(t2)>.

: (12)

2
my —1

whereB(t) is a slowly varying function. Comparison with the explicit BT calculation up to RLO [23] leads
to

Jrn8aNN 1 2 2 Q3
= JromN _ = == )=1+[(-2.0~15)£0.3] %. 1
B(t) oy 5rams +0 3 +[(-2.0~15+£0.3] % (13)

The authors of Ref. [6] found thdl,, is reduced only by~ 2% wheng increases by 10%. Thus, limiting ourselves
to the = 1 case entails at most4% error*
The resulting one-body vector (1B) current components are

=2 I T =2
0—, - — i3 P t 2 q 1q -0 X pi q
VoL = e 14+ —rf — —+(1+ 2 —K ,
1 (@) Z ! |: 6" 8m?, ( V) 4m?, V4m12\,
1
V(G = G lgi—f-%(l-i-Kv)a X G 142 - =z 1\ o 14
lB(q)_thie _— + (14 2«y) lOlXp,—Eq % , ( )

wherer;” = (7;' — irl.y)/z andﬁi = (p; + pi)/2. The one-body axial-vector current components can be written for
convenience as

o q“ o
Alg=Als+ 5 —dpAp (15)

o —t

which definesA g, where

O - L _an| G G
Alg ()= AT, €97 —w ,
1B ¢4 Xi:g i My &m?

s Tl e N 2B pi—ai7?) = Laei -G +id b
AIB(q):ZgATi—e—zq.r, |:Gi<1+_r§>_’_ (pt i " Pi zP,) 540i - q q Pz:|. (16)

6

1

4 If the deviatign ofﬂAfrom 1 were important, we would have to include the one-body pseudoscalarif@gnin Eq. (15), as is necessary
for the two-bodyPog = P in Eqg. (18).
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The above equations correspond t6L® in HB x PT [24]. Apart from the mentioneddependence of the form
factors, the NLO contribution is found to be negligible; 0.1%, indicating a rapid convergence. We therefore
limit ourselves to NLO for the one-body currents although, to be completely consistent, we should in principle
include NLO.

3.2. Two-body exchange currents

Since the evaluation of the two-body exchange current is the focus of this work we discuss the various parts
of this exchange current in detail. We write the two-body vector and axial-vector curret§;@s, k2) and

A‘Z‘B(El, I_éz), wherel_c} = ﬁ; — pi is the momentum transferred to thi nucleon. For the two-body vector-charge
current we knoszoB(kl, k2) = O(Q*) ® [25], which therefore can be ignored. The spatial components of the
vector current have a one-pion-exchange contribution of opfd26]:

2 - - g - - g - i - 7
S e o . _ 84 | o1(02-k2) 02(01-k1) o1-k1 02-k2
Vo (k1. ko) = —i(t1 x 12) —A|: -

ka2 — k1) | +O(0%).
afZ| m2 —i2 w212 m,%—kfmg—kg(z 1)} (@)
17)
where f; ~ 93 MeV is the pion decay constant, and we make use of the notationty) ™ = (1 X 12)* —i(11 X
72)”. Analogously to Eqg. (15), we write the axial-vector current as [16,27],
o _Aa oy (A 4P 18
=4+ 5 (gpAz+ P). (18)

P

with

ASB(EL %2) =i(T1 X T2)~

ga 61k 284 <A . gi) k%1 -k
—_— — Cr+e3— =t + (1< 2), 19

8A i

3 > > - - 2 A 7 ~ 1 - - — (= 7
Aog(k1, k2) = —m{[z(n X T2)” p1+4C3ty ko + <C4+ Z)(Tl X T2)” (01 X k2)

1+ce . - . .7 62-k
(mx12) (01%Xq)|—F5—
mg — k5
+ [2d1(1] 51+ 15 52) + da(T1 x T2) " (GL x 52) | + (L« 2)}, (20)
Bl Tp) = -S4 [ga 2 62 k2 1o2 21
(k1. 2)__2’"an2 lezr_k%"‘( < 2). (21)
b4

Only one combination of the LEG; andds, is relevant for the.d capture process,

A n ~ 1. 2, 1

dREd1+2d2+§C3+§C4+ 3 (22)
Exactly the same combination of LEC’s appears in trifplecay, pp-fusion and the solakep process [16].
Adopting the same strategy as in Ref. [16], wedik from Fé(exp), the experimental value of the tritiughdecay
rate.

5 The terms of0(Q") correspond to those of'NLO.
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To facilitate the calculations, we perform a Fourier transformation (FT) of the above two-body currents. To
control short-range physics in performing FT, we introduce a Gaussian cut-off regulator

72
Sa(k?) = exp(— %) (23)

whereA is a cut-off parameter. It is to be emphasized that, although our calculation without regularization involves
no infinities, we still need a regulator since EFT, by definition, is valid only up to a certain momentum scale. The
regulated delta and Yukawa functions read

3= 3 2.2
@y [ 4 2=2457_ A A
= | G Sa(@)er” = (4372 eXp< 4 )
4% 5 -2\ 47 1
=[] —=S g’ ———. 24
yOA(m r) (27[)3 A(q ) q2+m2 ( )

We remark that this is exactly the same regularization method as used in Ref. [16].

In performing FT, we need to specify the time components of the momentum transferred to the nucleons. Energy
conservation imposes the constraik‘@:~|— kg =—¢%= m, — E,. In our calculation we will adopt the so-called
fixed-kinematics assumption (FKA) [11], where the energy transfer is assumed to be shared equally between the

two nucleons, i.e49 = k9 = (m, — E,)/2, which naturally brings in the quantify, = \/mg — (my, — E,)2/4.

The uncertainty related to FKA becomes largég® grows. The contribution from the largeg®| region, however,
will turn out to be so tiny that the assumptions relateldl.ct«xause little uncertainty in our calculation.

4. Thecaptureratefor thetransition to the 1Sy nn state

The deuteron and tho wave function may be written as

NG )—i[u i+ 320, (r)] £ Wo(r) = ——u0(r) 0,06 (25)
d\I'; 8d _«/EV d «/é d X1,5450,0, 0 _«/EV 0 X0,061,—-1

with
. sin _
/dr [uG(r) +wi()]=1 and limug(r) = 2% (cospr + cotssin prl.
r—00 p
0

Here $12(F) = 361 - Fo2 - 7 — 61 - 62, x (&) is the Pauli spinor (isospinor), ardg is the nn 1Sy phase shift. To
facilitate numerical work, we approximateE as

. E2 2792
AE:EU+2,/m2+p2+T”—M,Ld+(’)<%>, (26)

wherem = m, = 939566 MeV is the neutron mas&{,,s = m,, +mq = 1981272 MeV. In our calculation we will

5 .5)2
neglect the(’)(%) term since, as we shall show, the major contributions comes from the levyp| region.
Choosing the-axis alongp,,, we writeg = p, = E,z. This simplifies the structure of the transition amplitudes as

(Yol j%(@)1Wa(sa)) = 85, 0M, (Yolé} - (§)|Wa(sa)) = 85,0 My, (27)
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whereéy = F(X £i§)/+/2,é0 =2, andr = +£1, 0. We decompose the matrix elements into vector and axial vector
current contributionsM; ; = M, [V]— M, ,[A], and arrive at

max

- P

Gy¥,(0)? E,

rks 0_% / dpzszf(l—M—d) 2M_1 4+ Mo — M, [*. (28)
n

Note that M_1 = —(M41[V] + M;1[A]), Mo = —Mo[A] and, to the order under consideratiol; =
—M,[A]. The matrix elements of the vector current are

9]
2 —
MilV] :Aﬁ/dr {quo<udjo— @) - _wuél) (Md +7§>J1 Z;Z }
0

ﬁ ZmN N
+>»(4~/5)< 8f2> /druo / dx [( Jjgua — %)(yé— %ﬁ) —xqrjf<ud+%>yé
1 X . X Jéc L
+ 5(12 Ud — (ﬁjo + E)wd)yl} (29)

wherej* = j,(grx) are the spherical Bessel functions,

ynLEYnA(\/m%‘f‘ 1= le Clz,r),

d 1 9 1 a
ylA(m5r)E_r_y0A(m7r)5 y2A(m5r)— 2 YOA(m r)
ar arrar
Using Eq. (18), we obtain for the axial current
M,[A] M, [A] } 1 { ® }
= R _— - 30
{MA[A]} {MA[A] oz =t | srolq ) | MIA] =1 MO[A] + MIP]). (30)
(0.¢]
n 1
M[[A] = \/EgA/dV {—ug )(ud — \/éwd)j]_ — q—wzuo(udjo-i-\/iwdjz)}
) my 8m%,
—\/—2—§A|:1—<52+53——> i|/druo ud— de)jlyl—A (31)
Iz
o
~ t
M;L[A]zx/EgA'/dr”:l~l— 6"3\_ i| MdJO J2>
0
1

3m
_ (4 2\ x5 }
om3, [(f‘ f2>]2 walo
i 1
Yif kin _ L1H¢6 . wy\ |
dr| = - 21-s wa
Zmen / V|: . ((9 7 ( 2,0)1q |uo(ud + ﬁ)h)

~2

m R . 1 . wg
- ?nyOA <C3 + 204+ §>uo(udjo - 72]%)

- (4v2)
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2 .. 1 ) wa '\ . A -
+ ?RYZA (Cs —C4— Z)“O(ﬁwdjo - <Md - E)J% +d®8a(Fyuoua |, (32)
o0
5 8A A yia .
M[P] = (4\/5) Pmin [2 /dr [ZClmiTuo(ud — \/éwd)]l], (33)
0

where

) q 1
okin — —BA’O%uo(ud —V2wg)j1+ 1—2(jo + i) [uo(uy — V2w}) — up(ug — ~2wy)]

1
- 4—ﬁ(2jo - jﬁ‘)uowd, (34)

1
J5=1—=350) 2. Jn = Jn <§qr>,

ug(r) N 3u0(2r)‘

1) l
un (r)y=ugq(r) —
o (r)=ugy(r) " "

u@ @) = ug(r) —3

uo(r)
r 9

In the above expressions the curly brackets denote 1B contributions, and for clarity we have suppressed the
dependence onin some equations.

5. Resaults

Table 1 showsi“,fdzo as a function of the cut-off parametet, As discussed, the short-range exchange current
contribution depends on the single low-energy considnisee Eqgs. (32), (22), antf® determined frornl“é(exp)
is a function ofA (see Ref. [16]). We observe that the variatiori‘ggfo over the range oft under consideration is

less than (7 s 1. Thed®-dependence in the table indicates the importance of the contribution of the short-distance

exchange current. Without th&® term, I“Ifd=° would change as much as 16'sfor A = 500-800 MeV. Thus,

renormalizing thei % -term usingl“é(exp) reduces the variation df},; with respect tad by a factor~ 20, leading
to the practicallyA-independent behavior @f,;. Considering this stability we will hereafter only discuss the case
corresponding tol = 600 MeV andd® = 1.78.

The capture rate contains several interference terms, which are listed in Table 2 in a cumulative manner. We
note that the axial charge (AC) plays only a minor role; its destructive interference with GT decreases the capture
rate by~ 1 s~1. Meanwhile, the M1 contribution interferes constructively with GT, increaging by ~ 59 sL.
Furthermore, the two-body MEC in thie= 0 channel increases the capture rate-hi3 s1.

Table 1
L =0 capture rate (ins!) calculated as a function of the cutoff. Also listed are the corresponding valuesidt determined frorrré (exp
[16]

A (MeV) ar r,fd=0 s
500 100+ 0.07 2547 — 9.854R + 0.159dR)2 = 2450+ 0.7
600 178+0.08 2611 —9.094R +0.132(dR)2 = 2453+ 0.7

800 3904 0.10 2710 — 6.76dR +0.070(dR)2 = 2457 + 0.6
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Table 2

Cumulative contributions td},; (calculated forA = 600 MeV andd® = 1.78). The row labeled “1B” corresponds to the case that contains
one-body contributions only, while the row labeled “48B” to the case that includes both the one-body and MEC contributions. The three
columns labeled L = 0” show contributions from thé& = 0 channel, with the contributions of the different transition operators displayed in a
cumulative manner. The fifth column gives contribution from the 1 channels, as evaluated in TKK, Ref. [6], and the last column shows the
sum of theL =0 andL > 1 contributions

Tua s L=0 L>1 Total
IGT? IGT + AC|? IGT + AC + M1
|1B)2 178 177 232 138 370
1B + 2B)2 187 186 245 141 386
Table 3

Matrix elements calculated for representative value€gf (MeV) and the cumulativd. = 0 capture rate for the case: = 600 MeV and
dR® =1.78. In each entry for the matrix element, the first number (preceding”at “ —" sign) gives the one-body contribution, while the
second number gives the two-body contribution

Enn Mq[A] MiqlV] MolA] My[A] ks

0.0 7309+ 1.24 1468+ 0.53 5022+ 0.81 079-0.23 0

1.0 2088+ 0.38 415+0.16 1426+ 0.25 018-0.07 91
10.0 2594 0.12 0474 0.04 182+0.08 006—-0.01 231
30.0 0.49+0.05 007+0.01 039+0.04 004-0.00 244
EMax 0.056— 0.003 0 0056— 0.003 0 245

Our final result for]“lfd:0 = 245s1in Table 2 should be compared with TKK’s resul}fdzo(TKK) =259s5156

; — L>1
By adding the KX L <5 contnbutlon,l“ud

I =386s", (35)

to be compared with TKK's result, s (TKK) = (397~ 400 s 1.

As mentioned earlier, a primary question is whethércapture process is “gentle enough” for applying 8T
with reasonable confidence. As noted the “dangerous” region forBoccurs when the two neutrons carry most
of the final energy. To address this issue, it is useful to consider the differential captureliai¢d E,.,, where
E..= 2(\/m,% +p2— mn) is the energy of the final two-neutron relative motion. An equally informative quantity
is the “cumulative” capture rate

=141 s, calculated by TKK, we arrive at the total capture rate

El‘lVl
dl,
Tua(Enn) = / TR (36)
nn

0

From these quantities we can assess to what exténtapture is free from the “dangerous” kinematic region.

We show in Table 3 the matrix elemeni®f1[A], M11[V], Mo[A] and M,[A], calculated for representative
values ofE,,, and forA = 600 MeV andd® = 1.78. Table 3 also giveEIdeO(En,,). The graphical representation

of I',a(En,) can be found in Fig. 1. We learn from Table 3 that the matrix elements decrease quite Eagt as
increases, a feature that can be easily understood as followsSghe radial wave function is proportional to
(sindo)/p = %[(p cotso)? + p?]~1/2. Since thewn scattering length is very largg,cotso diminishes rapidly when

the nn relative momentunp gets small. The examination of Table 3 also reveals that the one-body amplitudes
decrease more quickly than the two-body amplitudes. This is a consequence of the softness of the deuteron wave

6 We have re-run the code of TKK using, = 1.267. TKK's original result corresponding gy = 1.262 wasrlfd:O(TKK) =257sL,
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Fig. 1. Cumulativen.—d capture rate (in él) calculated forA = 600 MeV andd® = 1.78. The dashed line gives thie= 0 contribution,
d_ (Enn), while the solid line shows the total contributiof, ; (En,) = F/fd O(E,m) + Ff‘d>l(E,m). The empty and solid circles for the
values atE,, = EMa&~ 102 MeV, forL =0 andL > 0, respectively.

function, which cannot supply high momentum transfers needed for producing large valpe#\sfa result,
the contributions from higlk,,,—where the applicability of EFT is questionable—is negligible. For instance, the
contribution toF,fdzo from E,, > 30 MeV is just 11 s~1, and that from&,,, > 50 MeV is less than @ s™1

We now can make a rough estimate of the theoretical error associated with this calculation. Uncertainty related
to the G p term, Eq. (12) (or8) is ~ 1 s~1, while uncertainty reflecting thel-dependence is less than 1ls
uncertainty inFé (exp) (or that ind® for a givenA) can affectl’,4 at the level of 1 s1. Furthermore, owing to the
above-discussed “gentleness” of the capture kinematics, the higher-order corrections to the 2B MEC should
converge rapidly in powers @, /my ~ 0.1; the uncertainly due to the higher-order contributions in expected to
be~ 1 s~1. If we assign a rather conservative error, 2 sto the L > 1 contributions obtained in Ref. [6], the
overall uncertainty in our estimate becomes er ~ 1% in the total capture rate.

As mentioned, there is a serious disagreement between the two measured vajye<afr theoretical result is
consistent with',4(exp) in Ref. [18]. In the present exploratory study we have not considered radiative corrections
[28], which are expected to be smaller than the existing uncertainfy,iriexp). When the planned precision
measurement of th&),; at PSI [20] is realized, the issue of radiative corrections should certainly be addressed.
The EFT approach as described here will provide a useful tool for this purpose as well. Once the accuracy in

I (exp is significantly improved, we will be able to ugel capture to determine the low energy constafi
a quantity critically important for the accurate evaluation of thiecross sections used in the analysis of the
SNO experiments. At present the tritiusadecay is a much more accurate source of informatiod ®han j.d
capture, but it is hoped that in the near futdtg; will provide an independent constraint df. We consider this
redundancy extremely important.
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