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Abstract

Muon capture on the deuteron is studied in a framework that essentially incorporates heavy baryon chiral perturbation theory
(HBχPT). It is found that by far the dominant contribution toµd capture comes from a region of the final three-body phase-
space in which the energy of the two neutrons is sufficiently small for HBχPT to be applicable. The single unknown low-energy
constant having been fixed from the tritium beta decay rate, our calculation contains no free parameter. Our estimate of theµd

capture rate is consistent with the existing data. The relation betweenµd capture and theνd reactions, which are important for
the SNO experiments, is briefly discussed. 2002 Elsevier Science B.V. All rights reserved.

PACS: 12.39.Fe; 23.40.-s

1. Introduction

Electroweak processes in the two-nucleon systems invite detailed studies for multiple reasons. From the nuclear
physics point of view, these processes offer a valuable testing ground of the basic inputs of nuclear physics. In
astrophysics, the precise knowledge of thepp fusion cross section is of crucial importance for building a reliable
model for stellar evolution [1]. Furthermore, experiments at the Sudbury Neutrino Observatory (SNO) [2,3] to
observe solar neutrinos with a heavy-water Cerenkov counter have made it extremely important to estimate theνd

reaction cross sections with high precision.
In this note we studyµd capture:µ− + d → νµ + n + n, in a formalism motivated by effective field theory

(EFT). Our work is connected to the above-mentioned urgent need of accurate estimates of theνd cross sections,
σνd . To expound this connection, we will first explain the standard nuclear physics approach (SNPA), see, e.g.,
Ref. [4]. This is a highly successful method for describing nuclear responses to electroweak probes. In this approach
we consider one-body (1B) impulse approximation terms and two-body (2B) exchange-current terms acting on
non-relativistic nuclear wave functions, with the exchange currents derived from a one-boson exchange model.
The vertices in the relevant Feynman diagrams are obtained from a Lagrangian constructed to satisfy the low-
energy theorems and current algebra [5], while the nuclear wave functions are generated by solving theA-body
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Schrödinger equation,H |ΨA〉 = E|ΨA〉, where the HamiltonianH contains realistic phenomenological nuclear
potentials. The most elaborate study ofµd capture based on SNPA was carried out by Tatara et al. (TKK) [6] and
by Adam et al. [7].

Now, the best available estimation ofσνd based on SNPA is due to Nakamura et al. (NSGK) [8], while that
based on EFT is due to Butler, Chen, and Kong (BCK) [9]. Since EFT is a general framework [10], it can
give model-independent results,provided all the low-energy coefficients (LEC) in the effective Lagrangian,Leff,
are predetermined.Leff considered by BCK, however, does contain one unknown parameter (L1A), which they
adjusted to reproduceσνd obtained by NSGK. After this adjustment, the results of BCK are found to be in perfect
agreement with those of NSGK. The fact that an ab initio calculation (modulo one free parameter) based on EFT
reproducesσνd of NSGK extremely well offers strong support to the calculation based on SNPA. At the same time,
it stresses the importance of carrying out an EFT calculation free from an adjustable parameter. An interesting
possibility is to useµd capture data as input to control the unknown LEC. An immediate question, however, is
whether this process is “gentle” enough to be amenable to EFT. The substantial energy transfer accompanying
the disappearance of a muon can lead to a region of the final three-particle phase space in which the intrinsic
state of the two neutrons receives such a large momentum that the applicability of EFT becomes a delicate issue.
Let this unfavorable kinematical region be called the “dangerous” region. The problem of the dangerous region is
reminiscent of the difficulty one encounters in applying EFT to threshold pion production inN +N → N +N +π

[11–14]. It will turn out (see below), however, that, unlike the pion production case,µd capture receives only a
tiny fraction of contribution from the dangerous region, and therefore the theoretical uncertainty caused by the
dangerous region is practically negligible.

The EFT calculation in [9] used the power divergence subtraction scheme (PDS) [15]. We employ here
a formalism in which the transition operators are derived from irreducible diagrams in heavy-baryon chiral
perturbation theory (HBχPT), while the transition matrix elements are obtained with the use of the initial and
final nuclear wave functions obtained in SNPA. For convenience, we refer to this approach as EFT*. The use of
the SNPA wave functions causes some degree of deviation from genuine EFT but, as discussed in [16], EFT*
can nevertheless reduce the model-dependence of SNPA drastically. According to [16], a next-to-next-to-next-to-
leading order (N3LO) calculation in EFT* contains one unknown LEC, denoted byd̂R. Like L1A discussed by
BCK, the parameter̂dR controls the strength of a short-range exchange-current term and, onced̂R is fixed from
data, we can make a definite prediction forσνd . We, therefore, investigate here the relation betweend̂R and theµd
capture rate,Γµd . Our study is essentially of exploratory nature, given the present limited accuracy (see below) of
the experimental value ofΓµd .

Another important point concerninĝdR is that, as emphasized in [16], the strength ofd̂R can be reliably related
to the tritiumβ-decay rate,Γ t

β . Thus, using the experimental value ofΓ t
β , which is known with high precision,

one can determinêdR and then proceed to make predictions on various two-nucleon weak-interaction processes,
including theµd capture rate,pp fusion rate, andνd cross sections. We will present here the first estimate of the
µd capture rate obtained in this approach; thepp fusion rate has already been discussed in [16], and theνd cross
sections will be reported elsewhere [17].

2. The capture rate

Althoughµd capture can in principle occur from the twoµd hyperfine states (Sµd = 1/2 andSµd = 3/2), the
capture is known to take place practically uniquely from the hyperfine doublet state. Therefore, concentrating on
this dominant capture, we refer to hyperfine-doubletµd capture simply asµd capture and denote the hyperfine-
doubletµd capture rate byΓµd . The measured value ofΓµd is Γ

exp
µd = 409± 40 s−1 [18] andΓ exp

µd = 470± 29

s−1 [19]. We remark that a high-precision measurement ofΓµd is being contemplated at PSI [20].
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Denoting byL the orbital angular momentum of the two-neutron relative motion in the final state, we can write

(1)Γµd =
∑

L=0,1,2...

Γ L
µd,

whereΓ L
µd is the rate ofµd capture leading to theL state. Here we shall be primarily concerned withΓ L=0

µd

since it is this quantity that contains information aboutd̂R . The contributions ofΓ L
µd (L � 1) are significant,1 but

their calculation is not expected to involve any major EFT-related issues. In general, due to the centrifugal force,
the L � 1 contributions cannot be too sensitive to short-range physics, which implies that chiral expansion for
them should converge rapidly. Specifically, theL = 1 contributions are dominated by the axial-charge (AC) and
E1 transitions, whose one-body operators (which are NLO in chiral counting) are well known. The lowest order
meson-exchange corrections (MEC) to the one-body operators come from soft one-pion-exchange (OPE), which
is N2LO in chiral counting. These soft-OPE terms, dictated by chiral symmetry, are well known, and they are
model-independent. ForL � 2 states, within the accuracy of our evaluation only one-body contributions [6] have
to be included. In our exploratory study, therefore, we concentrate on a detailed evaluation ofΓ L=0

µd , and forΓ L
µd

(L� 1) we simply use the results obtained by Ref. [6].
Muon capture by the deuteron is effectively described by the current–current Hamiltonian of weak interactions

(2)HW = GV√
2

∫
d3x Lα(
x )J α(
x)+ h.c.,

where the leptonic and the hadronic charged currents are

(3)Lα(
x )= ψ̄ν(
x )γα(1− γ5)ψµ(
x ) and J α(
x ) = (
V α −Aα

)a=1
(
x )− i

(
V α −Aα

)a=2
(
x ),

respectively, andGV = 1.14939× 10−5 GeV−2 [21]; α (a) is the Lorentz (isospin) index. In the center-of-mass
system of the initialµ−d atom from which capture occurs, we can safely assume
pµ = 
pd = 
0. Consequently, the
four-momentum transfer to the leptonic system,qα ≡ (pν −pµ)

α , reads(q0, 
q)= (Eν −mµ, 
pν). Theµd capture
amplitude is then given by

(4)〈f |HW |i〉 = GV√
2
Ψµ−d (
0)lα〈Ψnn(−
q, 
p; s1s2)|jα(
q )|Ψd(sd)〉,

where the Fourier-transformed currents are

(5)jα(
q )≡
∫

d3
x e−i 
q·
xJ α(
x ),
(6)lα ≡ ei 
x·
q〈ν(pν, sν)|Lα(
x )|µ−(pµ, sµ)〉 = ūν( 
pν, sν)γα(1− γ5)uµ( 
pµ, sµ).

In Eq. (4),Ψµ−d (
0) = 1/
√
πa

3/2
0 is the 1S wave function of theµ−d atom, wherea0 ≡ (mµ + md)/mµmdα,

with α � 1/137.036 the fine structure constant.2 Ψd(sd) in Eq. (4) represents the deuteron wave function with the
z-component of its spinsd ; Ψnn(−
q, 
p; s1s2) represents the finalnn wave function, with totalnn momentum−
q,
relativenn momentum
p = ( 
p1 − 
p2)/2, and thez-components of the neutron spins,s1 ands2. It is easy to obtain

Γµd = |GVΨµ(
0)|2
4(2Jµd + 1)

∫
d3 
p
(2π)3

∫
d3 
pν

(2π)3
2πδ(,E)

(7)×
Jµd∑

Sµd =−Jµd

∑
s1s2sµsd

∣∣〈Ψnn|jα(
q )|Ψd〉lα
〈1
2, sµ;1, sd

∣∣Jµd,Sµd 〉∣∣2,
1 For example,Γ L=1

µd
≈ 1

3Γµd according to Ref. [6].
2 The small correction due to the finite size of the deuteron is taken into account in the actual calculation.
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whereJµd = 1/2, ,E is the energy difference between the final and initial states,Ψd ≡ Ψd(sd) and Ψnn ≡
Ψnn(−
q, 
p; s1s2).

3. HBχPT Lagrangian and the hadronic currents

To derive the transition operators, we adopt Weinberg’s counting rule. In HBχPT the leading order (LO)
Lagrangian is given by

(8)L0 = �B[iv ·D + 2igAS ·∆]B − 1

2

∑
A

CA

(�BΓAB
)2 + f 2

π Tr
(
i∆µi∆µ

)+ f 2
π

4
Tr(χ+)

with

Dµ ≡ ∂µ + 1

2

[
ξ†, ∂µξ

]− i

2
ξ†Rµξ − i

2
ξLµξ

†, ∆µ = 1

2

{
ξ†, ∂µξ

}+ i

2
ξ†Rµξ − i

2
ξLµξ

†

andχ+ = ξ†χξ† + ξχ†ξ , whereRµ = τa

2 (Va
µ +Aa

ν) andLµ = τa

2 (Va
µ −Aa

ν) denote the external gauge fields. In

the absence of the external scalar and pseudo-scalar fieldsχ =m2
π , and we define the pion field asξ = exp

(
i 
τ · 
π

2fπ

)
.

It is convenient to choose the four-velocityvµ and the spin operatorSµ asvµ = (1, 
0) andSµ = (0, 
σ/2).
The next-to-leading-order (NLO) Lagrangian (including the “1/mN ” terms) in the one-nucleon sector is given

in [22] while that in the two-nucleon sector is given in [12].3 Combining them, we can write the NLO Lagrangian
relevant to our case as

L1 = �B
(
vµvν − gµν

2mN

DµDν + c1 Trχ+ +
(

4c2 − g2
A

2mN

)
(v · i∆)2 + 4c3i∆ · i∆

+
(

2c4 + 1

2mN

)[
Sµ,Sν

][i∆µ, i∆ν] − i
1+ c6

mN

[
Sµ,Sν

]
f+
µν

)
B

(9)− 4id1�BS ·∆B�BB + 2id2ε
abcεµνλδv

µ∆ν,a�BSλτbB�BSδτ cB + · · · ,
where

ε0123= 1, ∆µ = τa

2
∆a

µ,

f+
µν = ξ

(
∂µLν − ∂νLµ − i[Lµ,Lν]

)
ξ† + ξ†(∂µRν − ∂νRµ − i[Rµ,Rν ]

)
ξ.

We find it convenient to use the dimensionless low-energy constantsĉ’s andd̂ ’s defined by

(10)c1,2,3,4 = 1

mN

ĉ1,2,3,4, d1,2 = gA

mNf 2
π

d̂1,2.

The values of these low energy constants,ĉ1,2,3,4, are taken from Ref. [22]:

(11)ĉ1 = −0.60± 0.13, ĉ2 = 1.67± 0.09, ĉ3 = −3.66± 0.08, ĉ4 = 2.11± 0.08

and c6 = κV = 3.70. These values were determined at tree level (or NLO) in the one-nucleon sector, which
correspond to N3LO in our two-nucleon calculation.

3 Our definition of the pion field differs from that used in Ref. [12] by a minus sign.
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3.1. The one-body currents

The one-body currents can be obtained either by an explicit HBχPT calculation or by the Foldy–Wouthuysen
(FW) reduction of the well-known relativistic expressions. The former method requires one-loop diagrams which
consist of vertices fromL0 (for N2LO contributions) and those which contain one vertex fromL1 (for N3LO
contributions); also needed are the corresponding counter-terms fromL2 andL3. We adopt here the FW reduction
method for convenience. Since the range oft ≡ q2 = mµ(mµ − 2Eν) for µd capture is small (−m2

µ � t � m2
µ),

the t-dependences in the standard form factors,FV
1,2(t) andGA(t), give only less than 2% effects, which can be

reliably taken into account by expansion int ,

FV
1 (t) = 1+ t

6
r2
V +O(t2), FV

2 (t) = κV +O(t), GA(t)= gA

(
1+ t

6
r2
A +O(t2)

)
.

Keeping the terms linear int is consistent with HBχPT to the order we calculate. Some caution is required for the
GP (t) term, which contains the pion-pole contributions,

(12)
GP (t)

2mN

≡ β(t)
2mNGA(t)

m2
π − t

,

whereβ(t) is a slowly varying function. Comparison with the explicit HBχPT calculation up to N2LO [23] leads
to

(13)β(t)= fπgπNN

gAmN

− 1

6
r2
Am

2
π +O

(
Q3

Λ3
χ

)
= 1+ [

(−2.0∼ 1.5)± 0.3
]

%.

The authors of Ref. [6] found thatΓµd is reduced only by∼ 2% whenβ increases by 10%. Thus, limiting ourselves
to theβ = 1 case entails at most 0.4% error.4

The resulting one-body vector (1B) current components are

V
0,−
1B (
q )=

∑
i

τ−
i e−i 
q ·
ri

[
1+ t

6
r2
V − 
q 2

8m2
N

+ (1+ 2κV )
i 
q · 
σi × 
̄pi

4m2
N

− κV

q 2

4m2
N

]
,

(14)
V−
1B(
q )=

∑
i

τ−
i e−i 
q ·
ri

[ 
̄pi + i
2(1+ κV )
q × 
σi

mN

+ (1+ 2κV )

(
i 
σi × 
̄pi − 1

2

q
)

ω

4m2
N

]
,

whereτ−
i ≡ (τ xi − iτ

y

i )/2 and 
̄pi = ( 
p′
i + 
pi)/2. The one-body axial-vector current components can be written for

convenience as

(15)Aα
1B = Âα

1B + qα

m2
π − t

qβÂ
β

1B,

which definesÂ1B, where

Â
0,−
1B (
q )=

∑
i

gAτ
−
i e−i 
q·
ri

[

σi · 
̄pi

mN

−ω

σi · 
q
8m2

N

]
,

(16)
̂A−
1B(
q )=

∑
i

gAτ
−
i e−i 
q·
ri

[

σi
(

1+ t

6
r2
A

)
+ 2

( 
̄pi 
σi · 
̄pi − 
σi 
̄p2
i

)− 1
2 
q 
σi · 
q + i 
q × 
̄pi

4m2
N

]
.

4 If the deviation ofβ from 1 were important, we would have to include the one-body pseudoscalar term,P̂1B in Eq. (15), as is necessary
for the two-bodyP̂2B = P̂ in Eq. (18).
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The above equations correspond to N2LO in HBχPT [24]. Apart from the mentionedt-dependence of the form
factors, the N2LO contribution is found to be negligible,∼ 0.1%, indicating a rapid convergence. We therefore
limit ourselves to N2LO for the one-body currents although, to be completely consistent, we should in principle
include N3LO.

3.2. Two-body exchange currents

Since the evaluation of the two-body exchange current is the focus of this work we discuss the various parts
of this exchange current in detail. We write the two-body vector and axial-vector currents asV

µ
2B(


k1, 
k2) and
A
µ
2B(


k1, 
k2), where
ki = 
p′
i − 
pi is the momentum transferred to theith nucleon. For the two-body vector-charge

current we knowV 0
2B(


k1, 
k2) = O(Q4) 5 [25], which therefore can be ignored. The spatial components of the
vector current have a one-pion-exchange contribution of orderQ2 [26]:

(17)


V2B
(
k1, 
k2

)= −i(τ1 × τ2)
− g2

A

4f 2
π

[

σ1(
σ2 · 
k2)

m2
π − k2

2

− 
σ2(
σ1 · 
k1)

m2
π − k2

1

+ 
σ1 · 
k1

m2
π − k2

1


σ2 · 
k2

m2
π − k2

2

(
k2 − 
k1
)]+O

(
Q4),

wherefπ � 93 MeV is the pion decay constant, and we make use of the notation(τ1 × τ2)
− ≡ (τ1 × τ2)

x − i(τ1 ×
τ2)

y . Analogously to Eq. (15), we write the axial-vector current as [16,27],

(18)Aα
2B = Âα

2B + qα

m2
π − t

(
qβÂ

β
2B + P̂

)
,

with

(19)Â0
2B

(
k1, 
k2
)= i(
τ1 × 
τ2)

− gA

4f 2
π


σ1 · 
k1

m2
π − k2

1

− 2gA
mNf 2

π

(
ĉ2 + ĉ3 − g2

A

8

)
τ−

1

k0
1
σ1 · 
k1

m2
π − k2

1

+ (1 ↔ 2),

(20)


̂A2B
(
k1, 
k2

)= − gA

2mNf 2
π

{[
i

2
(
τ1 × 
τ2)

− 
̄p1 + 4ĉ3τ
−
2


k2 +
(
ĉ4 + 1

4

)
(
τ1 × 
τ2)

−(
σ1 × 
k2
)

+ 1+ c6

4
(
τ1 × 
τ2)

−(
σ1 × 
q )
] 
σ2 · 
k2

m2
π − k2

2

+ [
2d̂1(τ

−
1 
σ1 + τ−

2 
σ2)+ d̂2(
τ1 × 
τ2)
−(
σ1 × 
σ2)

]+ (1 ↔ 2)

}
,

(21)P̂
(
k1, 
k2

)= − gAm
2
π

2mNf 2
π

{
8ĉ1
τ−

2

σ2 · 
k2

m2
π − k2

2

+ (1 ↔ 2)

}
.

Only one combination of the LEC,̂d1 andd̂2, is relevant for theµd capture process,

(22)d̂R ≡ d̂1 + 2d̂2 + 1

3
ĉ3 + 2

3
ĉ4 + 1

6
.

Exactly the same combination of LEC’s appears in tritonβ-decay,pp-fusion and the solarhep process [16].
Adopting the same strategy as in Ref. [16], we fixd̂R fromΓ t

β(exp), the experimental value of the tritiumβ-decay
rate.

5 The terms ofO(Qν) correspond to those of NνLO.
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To facilitate the calculations, we perform a Fourier transformation (FT) of the above two-body currents. To
control short-range physics in performing FT, we introduce a Gaussian cut-off regulator

(23)SΛ
(
k2)= exp

(
− 
k2

2Λ2

)
.

whereΛ is a cut-off parameter. It is to be emphasized that, although our calculation without regularization involves
no infinities, we still need a regulator since EFT, by definition, is valid only up to a certain momentum scale. The
regulated delta and Yukawa functions read

δ
(3)
Λ (
r )≡

∫
d3
q
(2π)3

S2
Λ

(
q 2)ei 
q·
r = Λ3

(4π)3/2 exp

(
−Λ2r2

4

)
,

(24)y0Λ(m, r)≡
∫

d3
q
(2π)3

S2
Λ

(
q 2)ei 
q·
r 1


q 2 +m2
.

We remark that this is exactly the same regularization method as used in Ref. [16].
In performing FT, we need to specify the time components of the momentum transferred to the nucleons. Energy

conservation imposes the constraint:k0
1 + k0

2 = −q0 = mµ − Eν . In our calculation we will adopt the so-called
fixed-kinematics assumption (FKA) [11], where the energy transfer is assumed to be shared equally between the

two nucleons, i.e.,k0
1 = k0

2 = (mµ −Eν)/2, which naturally brings in the quantitỹmπ ≡
√
m2

π − (mµ −Eν)2/4.

The uncertainty related to FKA becomes large as|q0| grows. The contribution from the large|q0| region, however,
will turn out to be so tiny that the assumptions related tok0

i cause little uncertainty in our calculation.

4. The capture rate for the transition to the 1S0 nn state

The deuteron and the1S0 wave function may be written as

(25)ψd(
r; sd) = 1√
4πr

[
ud(r)+ S12(r̂)√

8
wd(r)

]
χ1,sd ξ0,0, ψ0(r) = 1√

4πr
u0(r)χ0,0ξ1,−1

with

∞∫
0

dr
[
u2
d(r)+w2

d (r)
]= 1 and lim

r→∞u0(r)= sinδ0

p
[cospr + cotδ0 sinpr].

HereS12(r̂) = 3
σ1 · r̂ 
σ2 · r̂ − 
σ1 · 
σ2, χ (ξ ) is the Pauli spinor (isospinor), andδ0 is thenn 1S0 phase shift. To
facilitate numerical work, we approximate,E as

(26),E =Eν + 2

√
m2 + 
p 2 + E2

ν

4
−Mµd +O

(
( 
pν · 
p )2

4m3

)
,

wherem≡mn = 939.566 MeV is the neutron mass,Mµd ≡ mµ+md = 1981.272 MeV. In our calculation we will

neglect theO
( ( 
pν · 
p)2

4m3

)
term since, as we shall show, the major contributions comes from the lowp ≡ | 
p| region.

Choosing thez-axis along
pν , we write 
q = 
pν =Eνẑ. This simplifies the structure of the transition amplitudes as

(27)〈ψ0|j0(
q )|Ψd(sd)〉 = δsd,0Mt , 〈ψ0|ê∗
λ · 
j(
q )|Ψd(sd)〉 = δsd,λMλ,
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whereê± = ∓(x̂± iŷ)/
√

2, ê0 = ẑ, andλ = ±1,0. We decompose the matrix elements into vector and axial vector
current contributions,Mt,λ =Mt,λ[V ] −Mt,λ[A], and arrive at

(28)Γ L=0
µd = |GVΨµ(
0)|2

2π2

pmax∫
0

dp2p2E2
ν

(
1− Eν

Mµd

)
2

3

∣∣2M−1 +M0 −Mt

∣∣2.
Note thatM−1 = −(M+1[V ] + M+1[A]), M0 = −M0[A] and, to the order under consideration,Mt =
−Mt [A]. The matrix elements of the vector current are

Mλ[V ] = λ
√

2

∞∫
0

dr

{
qu0

(
udj0 − j2wd√

2

)
µV

2mN

−ωu
(1)
0

(
ud + wd√

2

)
j1

2µV − 1

4m2
N

}

(29)

+ λ(4
√

2)

(
− g2

A

8f 2
π

)
q

∞∫
0

dr u0

1/2∫
−1/2

dx

[(
jx0ud − jx2wd√

2

)(
yL0 − 2

3
yL1

)
− xqrjx1

(
ud + wd√

2

)
yL0

+ 1

3

(
jx2 ud −

(√
2jx0 + jx2√

2

)
wd

)
yL1

]
,

wherejxn ≡ jn(qrx) are the spherical Bessel functions,

yLn ≡ ynΛ

(√
m2

π + 1−4x2

4 
q 2, r
)
,

y1Λ(m, r)≡ −r
∂

∂r
y0Λ(m, r), y2Λ(m, r)≡ 1

m2
r
∂

∂r

1

r

∂

∂r
y0Λ(m, r).

Using Eq. (18), we obtain for the axial current

(30)

{
Mt [A]
Mλ[A]

}
=
{Mt

[
Â
]

Mλ

[
Â
]}+ 1

m2
π − t

{
ω

δλ,0|
q |
}(

ωMt

[
Â
]− |
q |M0

[
Â
]+M

[
P̂
])
,

(31)

Mt

[
Â
]= √

2gA

∞∫
0

dr

{
1

mN

u
(1)
0

(
ud − √

2wd

)
j1 − qω

8m2
N

u0
(
udj0 + √

2wdj2
)}

−
√

2gA
f 2
π

[
1−

(
ĉ2 + ĉ3 − g2

A

8

)
mµ −Eν

mN

] ∞∫
0

dr u0
(
ud − √

2wd

)
j1
y1Λ

r
,

Mλ

[
Â
]= √

2gA

∞∫
0

dr

{[
1+ t

6
r2
A − 
̄p 2

3m2
N

− δλ,0

q 2

8m2
N

]
u0

(
udj0 − wd√

2
jλ2

)

− 1

6m2
N

u
(2)
0

[(
ud − wd√

2

)
jλ2 − √

2wdj0

]}

− (
4
√

2
) gA

2mNf 2
π

∞∫
0

dr

[
y1

r

(
Okin − 1+ c6

4
(1− δλ,0)|
q |u0

(
ud + wd√

2

)
j1

)

− m̃2
π

3
y0Λ

(
ĉ3 + 2ĉ4 + 1

2

)
u0

(
udj0 − wd√

2
jλ2

)
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(32)+ m̃2
π

3
y2Λ

(
ĉ3 − ĉ4 − 1

4

)
u0

(√
2wdj0 −

(
ud − wd√

2

)
jλ2

)
+ d̂RδΛ(
r)u0ud

]
,

(33)M
[
P̂
]= (

4
√

2
) gA

2mNf 2
π

∞∫
0

dr

[
2ĉ1m

2
π

y1Λ

r
u0
(
ud − √

2wd

)
j1

]
,

where

Okin = −δλ,0
|
q |
8

u0
(
ud − √

2wd

)
j1 + 1

12

(
j0 + jλ2

)[
u0
(
u′
d − √

2w′
d

)− u′
0

(
ud − √

2wd

)]
(34)− 1

4
√

2

(
2j0 − jλ2

)
u0wd,

jλ2 ≡ (1− 3δλ,0)j2, jn = jn

(
1

2
qr

)
,

u
(1)
0 (r) = u′

0(r)− u0(r)

r
, u(2)(r)= u′′

0(r)− 3
u′

0(r)

r
+ 3

u0(r)

r2
.

In the above expressions the curly brackets denote 1B contributions, and for clarity we have suppressed the
dependence onr in some equations.

5. Results

Table 1 showsΓ L=0
µd as a function of the cut-off parameter,Λ. As discussed, the short-range exchange current

contribution depends on the single low-energy constantd̂R, see Eqs. (32), (22), and̂dR determined fromΓ t
β(exp)

is a function ofΛ (see Ref. [16]). We observe that the variation ofΓ L=0
µd over the range ofΛ under consideration is

less than 0.7 s−1. Thed̂R-dependence in the table indicates the importance of the contribution of the short-distance
exchange current. Without thêdR term,Γ L=0

µd would change as much as 16 s−1 for Λ = 500–800 MeV. Thus,

renormalizing thêdR-term usingΓ t
β(exp) reduces the variation ofΓµd with respect toΛ by a factor≈ 20, leading

to the practicallyΛ-independent behavior ofΓµd . Considering this stability we will hereafter only discuss the case
corresponding toΛ = 600 MeV andd̂R = 1.78.

The capture rate contains several interference terms, which are listed in Table 2 in a cumulative manner. We
note that the axial charge (AC) plays only a minor role; its destructive interference with GT decreases the capture
rate by∼ 1 s−1. Meanwhile, the M1 contribution interferes constructively with GT, increasingΓµd by ∼ 59 s−1.
Furthermore, the two-body MEC in theL = 0 channel increases the capture rate by∼ 13 s−1.

Table 1
L = 0 capture rate (in s−1) calculated as a function of the cutoffΛ. Also listed are the corresponding values ofd̂R determined fromΓ t

β(exp)
[16]

Λ (MeV) d̂R Γ L=0
µd

[s−1]
500 1.00± 0.07 254.7− 9.85d̂R + 0.159(d̂R)2 = 245.0± 0.7
600 1.78± 0.08 261.1− 9.09d̂R + 0.132(d̂R)2 = 245.3± 0.7
800 3.90± 0.10 271.0− 6.76d̂R + 0.070(d̂R)2 = 245.7± 0.6
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Table 2
Cumulative contributions toΓµd (calculated forΛ = 600 MeV andd̂R = 1.78). The row labeled “1B” corresponds to the case that contains
one-body contributions only, while the row labeled “1B+ 2B” to the case that includes both the one-body and MEC contributions. The three
columns labeled “L = 0” show contributions from theL = 0 channel, with the contributions of the different transition operators displayed in a
cumulative manner. The fifth column gives contribution from theL � 1 channels, as evaluated in TKK, Ref. [6], and the last column shows the
sum of theL = 0 andL� 1 contributions

Γµd [s−1] L = 0 L � 1 Total

|GT|2 |GT+ AC|2 |GT+ AC + M1|2
|1B|2 178 177 232 138 370

|1B+ 2B|2 187 186 245 141 386

Table 3
Matrix elements calculated for representative values ofEnn (MeV) and the cumulativeL = 0 capture rate for the case:Λ = 600 MeV and
d̂R = 1.78. In each entry for the matrix element, the first number (preceding a “+” or “ −” sign) gives the one-body contribution, while the
second number gives the two-body contribution

Enn M+1[A] M+1[V ] M0[A] Mt [A] Γ L=0
µd [s−1]

0.0 73.09+ 1.24 14.68+ 0.53 50.22+ 0.81 0.79− 0.23 0
1.0 20.88+ 0.38 4.15+ 0.16 14.26+ 0.25 0.18− 0.07 91

10.0 2.59+ 0.12 0.47+ 0.04 1.82+ 0.08 0.06− 0.01 231
30.0 0.49+ 0.05 0.07+ 0.01 0.39+ 0.04 0.04− 0.00 244
Emax
nn 0.056− 0.003 0 0.056− 0.003 0 245

Our final result forΓ L=0
µd = 245 s−1 in Table 2 should be compared with TKK’s result,Γ L=0

µd (TKK) = 259 s−1.6

By adding the 1� L� 5 contribution,Γ L�1
µd = 141 s−1, calculated by TKK, we arrive at the total capture rate

(35)Γµd = 386 s−1,

to be compared with TKK’s resultΓµd(TKK)= (397∼ 400) s−1.
As mentioned earlier, a primary question is whetherµd capture process is “gentle enough” for applying HBχPT

with reasonable confidence. As noted the “dangerous” region for HBχPT occurs when the two neutrons carry most
of the final energy. To address this issue, it is useful to consider the differential capture rate,dΓµd/dEnn, where
Enn ≡ 2

(√
m2

n + 
p 2 −mn

)
is the energy of the final two-neutron relative motion. An equally informative quantity

is the “cumulative” capture rate

(36)Γµd(Enn)≡
Enn∫
0

dΓµd

dE′
nn

dE′
nn.

From these quantities we can assess to what extentµd capture is free from the “dangerous” kinematic region.
We show in Table 3 the matrix elements,M+1[A], M+1[V ], M0[A] andMt [A], calculated for representative
values ofEnn, and forΛ = 600 MeV andd̂R = 1.78. Table 3 also givesΓ L=0

µd (Enn). The graphical representation
of Γµd(Enn) can be found in Fig. 1. We learn from Table 3 that the matrix elements decrease quite fast asEnn

increases, a feature that can be easily understood as follows. The1S0 nn radial wave function is proportional to
(sinδ0)/p = ±[(p cotδ0)

2 +p2]−1/2. Since thenn scattering length is very large,p cotδ0 diminishes rapidly when
the nn relative momentump gets small. The examination of Table 3 also reveals that the one-body amplitudes
decrease more quickly than the two-body amplitudes. This is a consequence of the softness of the deuteron wave

6 We have re-run the code of TKK usinggA = 1.267. TKK’s original result corresponding togA = 1.262 wasΓ L=0
µd

(TKK) = 257 s−1.
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Fig. 1. Cumulativeµ−d capture rate (in s−1) calculated forΛ = 600 MeV andd̂R = 1.78. The dashed line gives theL = 0 contribution,

Γ L=0
µd

(Enn), while the solid line shows the total contribution,Γµd(Enn) ≡ Γ L=0
µd

(Enn) + Γ
L�1
µd

(Enn). The empty and solid circles for the

values atEnn =Emax
nn � 102 MeV, forL = 0 andL � 0, respectively.

function, which cannot supply high momentum transfers needed for producing large values ofp. As a result,
the contributions from highEnn—where the applicability of EFT is questionable—is negligible. For instance, the
contribution toΓ L=0

µd fromEnn > 30 MeV is just 1.1 s−1, and that fromEnn > 50 MeV is less than 0.1 s−1.
We now can make a rough estimate of the theoretical error associated with this calculation. Uncertainty related

to theGP term, Eq. (12) (orβ) is ∼ 1 s−1, while uncertainty reflecting theΛ-dependence is less than 1 s−1;
uncertainty inΓ t

β(exp) (or that ind̂R for a givenΛ) can affectΓµd at the level of 1 s−1. Furthermore, owing to the
above-discussed “gentleness” of theµd capture kinematics, the higher-order corrections to the 2B MEC should
converge rapidly in powers ofmµ/mN ∼ 0.1; the uncertainly due to the higher-order contributions in expected to
be ∼ 1 s−1. If we assign a rather conservative error, 2 s−1, to theL � 1 contributions obtained in Ref. [6], the
overall uncertainty in our estimate becomes 5 s−1 or ∼ 1% in the total capture rate.

As mentioned, there is a serious disagreement between the two measured values ofΓµd . Our theoretical result is
consistent withΓµd(exp) in Ref. [18]. In the present exploratory study we have not considered radiative corrections
[28], which are expected to be smaller than the existing uncertainty inΓµd(exp). When the planned precision
measurement of theΓµd at PSI [20] is realized, the issue of radiative corrections should certainly be addressed.
The EFT∗ approach as described here will provide a useful tool for this purpose as well. Once the accuracy in
Γµd(exp) is significantly improved, we will be able to useµd capture to determine the low energy constantd̂R,
a quantity critically important for the accurate evaluation of theνd cross sections used in the analysis of the
SNO experiments. At present the tritiumβ-decay is a much more accurate source of information ond̂R thanµd
capture, but it is hoped that in the near futureΓµd will provide an independent constraint ond̂R. We consider this
redundancy extremely important.
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