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Abstract

We present a systematic analysis of next-to-next-to-leading-order diagrams that contribute to the pp™ppp 0 production
at threshold. Analytic expressions are given for the effective transition operators, and the relative importance of various
types of diagrams is discussed. The vertex-correction-type graphs are found to give only small corrections to lower order
graphs in conformity with expectations. By contrast, we find very large contributions from two-pion exchange graphs that
can be interpreted as a part of effective s-meson exchange diagrams. The recoil correction to the pion rescattering diagram
also turns out to be large. q 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 25.40.Ep; 25.40.Qa; 12.39.Fe

1. Introduction

w x 0High-precision measurements 1,2 of neutral pion production in proton-proton collisions pp™ppp just
w xabove the threshold have generated renewed theoretical scrutiny of this reaction 3–16 . This reaction is unique

among two-nucleon pion production processes in that it is not well described by the single-nucleon process
Ž . Ž . Ž .Born term , Fig. 1 a , and the s-wave pion rescattering process, Fig. 1 b . The reason is that the ‘‘large’’
Weinberg-Tomozawa term does not contribute to the pp™ppp 0 reaction, in contrast with e.g. charged-pion
production pp™pnpq, thus rendering pp™ppp 0 particularly sensitive to and hence an interesting testing
ground for the less-well-understood ‘‘small’’ isoscalar s-wave pion rescattering terms. From the calculations

Ž . Ž . 0done thus far it is clear that the two most basic processes, Fig. 1 a and b , give much smaller pp™ppp

w xcross sections than the measured values. Lee and Riska’s model calculation 4 suggests that shorter-range
isoscalar meson-exchange processes, like s- and v-exchanges between the two protons, might be very
important in this reaction.

w x w xIn heavy-baryon chiral perturbation theory HBx PT 17 one can define the ‘‘large’’ and ‘‘small’’ terms in
the Hamiltonian by way of chiral-order counting. In this language the first pion rescattering contributions to
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0 Ž . Ž . Ž .Fig. 1. Diagrams contributing to pp™ppp : Born term a , the pion-rescattering term b . The solid line denotes a nucleon proton , the
dashed line a pion and the open ellipses denote initial-rfinal-state interactions.

0 Ž q.pp™ppp are one chiral-order higher than those of the charged-pion production e.g., pp™pnp . This
means that pp™ppp 0 production is very sensitive to ‘‘correction terms’’, which tend to be ‘‘masked’’ by the
leading terms in most low-energy pion-nucleon processes. Since the Born term and the pion rescattering term do

0 w xnot explain the pp™ppp cross section, we extend here our previous calculation 13 to the next chiral order.
It must be mentioned, however, that application of HBx PT to the NN™NNp processes is a delicate matter

in at least two aspects. First, the non-negligible energy-momentum transfers involved can make less clear the
distinction between reducible and irreducible diagrams in Weinberg’s chiral counting scheme. This has led

w xCohen et al. 14 to propose new counting rules to be used for inelastic processes like NN™NNp . It is
noteworthy that in this modified scheme loop diagrams can be of the lowest order. Secondly, as the nucleon
recoil involved becomes appreciable, the static nucleon ‘‘propagator’’, which is one of the basic features of the
HBx PT formalism, can become increasingly problematic. Meanwhile, ‘‘improving’’ the HBx PT propagator by
including a nucleon recoil term requires an extension of HBx PT from its original form. Despite the importance
of these issues, we postpone the discussion of these matters to a future publication. In this Letter we rather use

w xthe standard counting rules a la Weinberg 18 within the framework of HBx PT. We concentrate on`
calculations of the effective transition operators strictly within the narrow definition of HBx PT. We also
relegate to the future the consideration of the initial- and final-state interactions in the transition amplitude, even

Ž .though we are aware of the paramount importance of a full distorted-wave DW calculation for comparison
with the experiment. This is, for one thing, because the transition operators resulting from our systematic
treatment of the new diagrams exhibit very complicated energy- and momentum-dependencies, rendering a full
DW calculation a highly non-trivial numerical task. Secondly, we wish to separate out the effects of

Ž .higher-order diagrams in the ‘‘kernel’’ irreducible part of the reaction from the perhaps more mundane yet
numerically important initial- and final-state interaction effects.

The principal purpose of this note is to report analytic results for the transition operators that arise from a
systematic treatment of the next chiral order diagrams in HBx PT. In order to gain some insight into the relative
numerical significance of these diagrams, we compare their absolute values, at the threshold, to that of the

Ž .one-pion exchange rescattering graph, Fig. 1 b . Our most important finding is that some of the two-pion
exchange diagrams, which have no lower-order counterparts, give by far the dominant transition operators at the

Ž .threshold sometimes by an order of magnitude larger than the nominally ‘‘leading’’ ones . These new diagrams
Ž .may be interpreted as a part of an effective s-meson exchange see below .
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2. Conventions and other preliminaries

The effective Lagrangian LL in HBx PT is expanded asch

LL sLL Ž0.qLL Ž1.qLL Ž2.q PPP . 1Ž .ch
Žn . Ž .LL represents a term of chiral order n with n'dq nr2 y2, where n is the number of fermion fields in

the term, and d is the number of derivatives or powers of m . The explicit forms for the ns0 and 1 terms arep

w x20 :
2fpŽ0. † m 2 †LL s Tr E U E Uqm U qUy2 qN iÕPDqg SPu N 2Ž . Ž . Ž .m p A4

ig AŽ1. 2 †� 4LL sy N SPD , ÕPu Nq2c m NN Tr UqU y2Ž .1 p2mN

g 2
A 2q c y N ÕPu Nqc NuPuNq PPP 3Ž . Ž .2 3ž /8mN

Ž . Ž .where we have retained only terms of direct relevance to our present calculation. The SU 2 field matrix U x
is non-linearly related to the pion field and has standard chiral transformation properties. We use the

2Ž . Ž . w x Ž .(representation U x s 1y p x rf q itPp x rf as in Ref. 20 . N x represents the large componentŽ . p p

Ž .of the heavy-nucleon field; the four-velocity parameter Õ is chosen to be Õ s 1,0,0,0 ; D Nm m m
1 † Ž .s E q j ,E j N is the covariant derivative of N; S is the covariant spin operator, which in the nuc-ž /m m m2

m † †Ž . w x w x(leon rest frame becomes S s 0,sr2 , and u s i j E jyjE j , where js U x 20 . The low-energyŽ .m m m

w xconstants c ,c and c have been determined from other processes, see e.g. Refs. 15,20 . An explicit expression1 2 3
Ž2. Ž y2 .for LL , which includes OO m recoil terms as well as terms containing new low-energy constants, can beN

w xfound, e.g., in Ref. 21 .
w xIn Weinberg’s chiral counting 18 each irreducible Feynman diagram carries a chiral order index n defined

by ns4yE y2Cq2 LqÝ n , where E is the number of nucleons in the Feynman diagram, L the numberN i i N

of loops, C the number of disconnected parts of the diagram, and the sum runs over all the vertices in the
w xFeynman graph 18 . In this note we consider irreducible diagrams with chiral orders up to n s 2 that give rise

to pp™ppp 0 transition operators. These diagrams are shown in Figs. 1 and 5. In the following TT Žn . stands
w Ž .xfor a transition operator of chiral order n . The lowest-order transition operator for the Born diagram Fig. 1a

w Ž .xhas nsy1, and that for the rescattering diagram has nsq1 Fig. 1b . We define the first HBx PT
w x Ž .calculation 13,14 which includes the aforementioned terms as the next-to-leading NLO calculation. Hence we

Ž . Ž .decree our next chiral order n s 2 calculation to be next-to-next-to-leading NNLO order. With the use of
Ž . Ž .LL in Eq. 1 , the two transition operators that feature in the NLO calculation are given in momentum spacech

w xby 13,14
g vA q XBorn Žnsy1. 0TT sTT s s P p qp t , 4Ž . Ž .Ý j j j j2 f 2mp Njs1,2

yg s Pk t 0
A j j jResc Žnsq1.TT sTT s k k ,q , 5Ž .Ž .Ý j 2 2ž /f k ym q ihp j pjs1,2

X Ž .where p and p js1,2 denote the initial and final momenta of the j-th proton. The four-momentum of thej j

exchanged pion is defined by the nucleon four-momenta at the p NN vertex: k 'p yp X, where p sj j j j
Ž . X Ž X

X. Ž 2 2 .1r2E , p , p s E , p with the definition E s p qm ym . The s-wave rescattering vertex functionp j j p j p N Nj j

Ž . Ž .k k,q is calculated from Eq. 3 :

m2 g 2 v k qPkp A q 0
k k ,q ' 2c y c y yc , 6Ž . Ž .1 2 32 2 2ž /ž /8mf m mNp p p
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Ž . Ž .where ks k ,k and qs v ,q represent the four-momenta of the exchanged and final pions, respectively,0 q
Ž 2 2 .1r2and v s q qm .q p

3. Analytic results

When we consider NNLO, we find 19 topologically distinct new types of diagrams that can potentially
contribute to NN™NNp reactions. For a particular case of the pp™ppp 0 reaction near threshold, the isospin
selection rules and the s-wave character of the outgoing pion reduce this number from 19 to 6. We refer to these
six as Type I, Type II, . . . , Type VI, and illustrate them in Figs. 2 and 4. Types I, II and III appear in Fig. 2,
Type IV in Fig. 3, and Types V and VI in Fig. 4. Some of these diagrams have been considered by Gedalin et

w xal. 22 , as we shall discuss later. We denote by M , M , ..., the NNLO transition operators that arise from theI II

diagrams of Type I, II, . . . , respectively. In addition to these six operators, as will be explained in more detail
Ž .below, there is an NNLO contribution from Fig. 5, which looks the same as Fig. 1 b , but which constitutes a

Žq1. w Ž .xhigher-order correction to TT Eq. 5 . We denote by M the transition operator due to this correction.VII

Then the total NNLO transition operator we consider is given by

TT Žq2.sM qM qM qM qM qM qM . 7Ž .I II III IV V VI VII

ŽThe explicit expressions for these operators are as follows. In the expressions below the subscripts i and j refer
.to nucleon number 1 and 2.

g XA 2
M s S Pk X q 8Ž .ÝI i j 15 28 f kp ji/js1,2

where

pX
iX X 2X sÕP p qp I k qÕP qq ÕP qqp qp I ÕPp ,yÕPk ,kŽ . Ž .Ž . Ž .1 i i p j i i 0 i j jž /2

pi X X 2qÕP qy ÕP qyp yp I ÕPp ,ÕPk ,k 9Ž . Ž .Ž .i i 0 i j jž /2

X syÕP p qpX
ÕP 5qyk ÕPk I kŽ . Ž . Ž .2 i i i j p j

pX
i XyÕP qq ÕP qqp qpŽ .i iž /2

= 2J ÕPp yJ ÕP p qk qÕPk ÕP k q2 p I ÕPp ,yÕPk ,kŽ . Ž . Ž .Ž . Ž .0 i 0 i j j j i 0 i j j

pi XyÕP qy ÕP qyp ypŽ .i iž /2

=
X X X X 2J ÕPp yJ ÕP p yk qÕPk ÕP k y2 p I ÕPp ,ÕPk ,k . 10Ž . Ž .Ž . Ž .Ž . Ž .0 i 0 i j j j i 0 i j j

g 3
A X XM s S P k yk J ÕPp qJ ÕPp qÕP p qp I kŽ . Ž . Ž .Ž . Ž .½ÝII i j i 0 j 0 j j j p j58 fp i/js1,2

q y2m2 q2ÕPp ÕPpX qk 2 I ÕPpX ,yÕPk ,k 2 . 11Ž .5Ž . Ž .p j j j 0 j j j

3g A a b m nM s S Pk X q2 ie Õ S S k X , 12Ž .ÝIII i j 1 mna b j i j 254 fp i/js1,2
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Fig. 2. Two-pion exchange graphs of type I, II and III -the ‘‘cross-box’’ graphs.
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Fig. 3. Pion-pion s-wave rescattering graph of type IV.

where
X X 1X syÕP p qp qp qp I kŽ . Ž .1 i j i j p j2

1
X Xq ÕP p qqqk YY ÕPp ,yk yÕP p qqqk YY ÕPp ,ykŽ . Ž . Ž . Ž .X i j i j j j j j

ÕP p ypŽ .i j

1
X Xq ÕP p yqyk YY ÕPp ,k yÕP p yqyk YY ÕPp ,k 13Ž .Ž . Ž . Ž . Ž .X i j i j j j j j

ÕP p ypŽ .i j

1
X XX s ÕP p qqqk AA ÕPp ,yk yÕP p qqqk AA ÕPp ,ykŽ . Ž . Ž . Ž .X2 i j i j j j j j

ÕP p ypŽ .i j

1
X Xy ÕP p yqyk AA ÕPp ,k yÕP p yqyk AA ÕPp ,k . 14Ž .Ž . Ž . Ž . Ž .X i j i j j j j j

ÕP p ypŽ .i j

Ž . Ž .In Eqs. 13 and 14 :
1YY v , P s 4 ÕPP I P yJ v yJ vyÕPPŽ . Ž . Ž . Ž . Ž .p 0 04

22 2 2q 2m y2 vyÕPP qP I v ,ÕPP , PŽ . Ž .Ž .p 0

22 22m yv y vyÕPPŽ .p

q 2ž /4P

= 22 ÕPP I P yJ v qJ vyÕPP q ÕPP 2vyÕPP I v ,ÕPP , P ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .p 0 0 0

15Ž .
and

2 2 2 2 22vyÕPP P m P P q4v y4v ÕPPŽ . Ž .p 2AA v , P s I P q q I v ,ÕPP , PŽ . Ž . Ž .p 02 2ž /24P 8 P

P 2 y2v ÕPPŽ .
1y J vyÕPP q J v yJ vyÕPPŽ . Ž . Ž .Ž .0 0 04 2ž /8 P
ÕPPy2v

q qOO 4yd . 16Ž . Ž .22 4pŽ .
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Ž .Fig. 4. Pion rescattering vertex corrections to Fig. 1 b of type V and VI.

Fig. 5. The pion-rescattering graph with n s2 at rescattering vertex.
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g 3 S PkA j j
M s ÝIV 5 2 24 f k ym q ihp j pi/js1,2

=
2 2X X X2 2ym q ÕPp J ÕPp q ym q ÕPp J ÕPp qÕP p qp DŽ . Ž . Ž . Ž . Ž .Ž . Ž .½ p i 0 i p i 0 i i i p

2 2q 3k ym y2k Pq X , 17Ž .5i p i

where

ÕP p qpXŽ .i i X X1 12 2 2Xsy I k q m yÕPp ÕPp y k I ÕPp ,ÕPk ,k y J ÕPp qJ ÕPp .Ž . Ž . Ž .Ž .Ž .p i p i i i 0 i i i 0 i 0 i2 22
18Ž .

g 3 yS PkA j j
M s ÝV 5 2 24 f k ym q ihp j pi/js1,2

=
2 2X X X2 2ÕP p qp D q ÕPp ym J ÕPp q ÕPp ym J ÕPp . 19Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .½ 5i i p i p 0 i i p 0 i

g yS PkA j j
M s ÝVI 5 2 28 f k ym q ihp j pi/js1,2

= ÕP p qpX
D qÕP 2 qqpX

ÕP yk q2 qqpX J ÕP pX qq� Ž . Ž . Ž . Ž .Ž .i i p i i i 0 i

qÕP 2 qyp ÕP yk q2 qyp J ÕP p yq . 204Ž . Ž . Ž . Ž .Ž .i i i 0 i

Žq1. w Ž .xAs mentioned earlier, the graph in Fig. 5 with the relevant lowest order vertices gives TT Eq. 5 . If we,
Ž2. w xhowever, use for the pion rescattering vertex in Fig. 5 the lagrangian LL 21 , there results an NNLO

Ž y2 . Žq1.transition operator, M , which represents ‘‘recoil’’ term corrections of OO m to TT . Its explicitVII N

expression is

g s Pk t 0
A j j jXM s y k k ,q 21Ž .Ž .ÝVII i j 2 2ž /f k ym q ihp j pi/js1,2

XŽ . Ž . w xwhere the expression for k k ,q is obtainable from Eq. C.3 of Ref. 21 .i j
Ž .The above expressions for the n s 2 diagrams contain four independent one-loop integrals, D , J v ,p 0

Ž 2 . Ž 2 .I P and I v,ÕPP, P , of which the first three contain divergences. The finite parts are defined to includep 0
Ž . Ž .ln m rl . We choose the cut-off parameter to be l s 1 GeV. The two integrals, D and J v , can be foundp p 0

w x Ž 2 .in Ref. 20 , while I P is a standard Feynman integral:p

1 d4 l 1
2I P s . 22Ž . Ž .Hp 4 22 2 2i w x2p m y l y i´ m y lyP y i´Ž . Ž .

The last integral, which is new, is given by

1 d4 l 1
2I v ,ÕPP , P sŽ . H0 4 22 2 2i 2p ÕP lyvy i´ m y l y i´ m y lyP y i´Ž . Ž . Ž .Ž .p p

'1 2 p j 1 jy ys1 y1s dx u s q tan qu ys logŽ . Ž .H2 ž /' ' ' '216p s s ys jq ys0

1 u ysŽ .1 ' 'q i dx u jq ys qu jy ys , 23Ž .Ž . Ž .H '16p ys0
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Fig. 6. The five-point contact-interaction counter-term graph.

2 2 Ž 2 . 2Ž 2 2 . Ž 2 .where ssm yv qx 2v P yP qx P yP , P sÕPP and jsvyxP . I v,ÕPP, P reduces to0 0 0 0 0
Ž . w x 2the integral g ÕPP given in Appendix B of Ref. 20 in the limit v s 0 and P s 0. This limit, however, is0

not applicable to the pp™ppp 0 reaction.
Our NNLO diagrams contain the usual divergences which need to be regularized and then renormalized by

Ž . Ž .appropriate counter terms. The single-nucleon process Born term of Fig. 1 a receives two types of
Ž . Ž y2 . Ž .corrections: i the finite ‘‘recoil corrections’’ of OO m involving finite known parameters, and ii theN

Ž . Žq1.infinite loop corrections. The n s 1 loop corrections, TT , to the Born amplitude were discussed in Ref.corr
w x Žq2.13 . We denote by TT the ns2 loop and recoil corrections to the Born term. The recoil corrections to thecorr

Born term are reduced by m rm nq2. The divergences contained in the graphs in Fig. 2 are canceledŽ .p N
Ž . Ž2. Ž . Ž .‘‘renormalized’’ by counter-terms in LL corresponding to the five-point p NNNN vertex diagram Fig. 6 .

Ž .The same terms renormalize a part of the singularities in M , Eq. 17 , coming from Fig. 3. The remainingIV

singularities in M are similar to those in the graphs in Fig. 4. To eliminate the latter singularities, LL Ž2. mustIV
w xcontain further counter-terms of the pion-nucleon scattering vertex type 21 . This can be accomplished with the

use of these counter-terms in graphs similar to the one in Fig. 5. We let TT XŽq2. stand for the n s 2 transitioncorr

operators that originate from such ns2 counter-terms. The complete set of the ns2 transition operators
Žq1. Žq2. XŽq2. w xincludes TT , TT , and TT , but we defer detailed discussion of these terms to a forthcoming paper 19corr corr corr

and concentrate here on the finite parts of the following effective operators 1

TT s TT Resc qTT Žq2. . 24Ž .

4. Numerical results and discussion

The purpose of this section is purely illustrative: we wish to have some idea as to the size of these
corrections. A proper treatment of the derived transition operators must involve DW analyses, which we

w xpostpone to the forthcoming paper 19 , where DW modifications to our numerical estimates described below as
well as changes due to the use of a non-static nucleon propagator will be discussed.

To proceed, we must fix the free parameters of the previous expressions. To NLO, as discussed in Ref.
w x Ž . Resc13,14 , the three parameters, c , c and c of Eq. 6 , enter into the pion rescattering operator TT . We shall1 2 3

1 Since we do not consider DW we leave out TT Born
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Table 1
The three sets of c parameters, in units of GeVy1, used in the text1,2,3

c c c1 2 3

A y0.87 3.34 y5.25
B y0.87 4.5 y5.25
C y0.98 3.34 y5.25

w xuse the three sets of parameters employed in Ref. 15 . Sets A, B and C in Table 1 summarize these values. Set
w xA represents the central values of c , c and c determined in Ref. 20 using the experimental values of the1 2 3

pion-nucleon s term, the nucleon axial polarizability a and the isospin-even s-wave p N scattering length aq.A
ŽSets B and C represent typical ranges of allowed values in the current determinations of theses parameters see

w x .Ref. 13 for details .
m Ž .For simplicity we limit our consideration to the threshold kinematics, which means q s m ,0 and thep

Ž . Ž . m Ž . 2single exchanged boson pion of Fig. 1 b has the four-momentum k s m r2,k with k s ym m .p p N
X Ž . Ž . Ž .Then the final nucleon three momenta are p s 0 for nucleon i s 1, 2 , and k k,q in Eq. 6 is fixed ati

w x13,14

m2 g 2
p A1

k s 2c y c qc y . 25Ž .th 1 2 322 ž /ž /8mf Np

Ž .Quantities of interest here are the magnitudes of the finite parts of the n s 2 transition operators, Eqs. 8 and
Ž . Resc Ž . 220 , relative to the magnitude of the pion rescattering operator, TT , Eq. 5 . Let us denote these ratios by

Resc Ž .R 'M rTT K s I, II, III, . . . , VII . Table 2 gives R ’s for each of the parameter sets A, B, and C. WeK K K

note that R , R and R , corresponding to the graphs in Fig. 2, give quite substantial individual contributionsI II III

but R and R cancel each other at threshold. 3 Most remarkably, R corresponding to the pion-pionII III I V

rescattering diagram, Fig. 3, is large, ranging 5;10.
The appearance of these large individual contributions calls for an explanation. The two-pion exchange

diagrams in Figs. 2 and 3 all involve one-loop integrals with three or four propagators. These loop integrals, for
which typical four-momentum transfers k are large, can produce the factor k 2 sym m in the numeratorp N

Ž 2 . Ž .multiplying the integral I v,ÕPP, P of Eq. 23 . This factor turns out to be accompanied by some negative0
2 Ž 2 y2 y2powers of f coming from the vertices, resulting in a large enhancement factor, OO k f sym m f ,p p p N p

.y15 . This feature essentially explains the large size of the two-pion exchange diagrams, although there are
other diagram-specific numerical factors.

The two-pion exchange diagrams in Fig. 2 can perhaps be viewed as a part of an effective s-meson exchange
w x 0 w xthat Lee and Riska 4 found to be important in pp™ppp . It has been shown via soft-pion arguments 23 that

w xthe effective s-meson exchange can be understood as a two-pion exchange. The results in Ref. 23 lead us to
suspect that the few diagrams we consider here are insufficient to generate the full strength of isoscalar two-pion
exchange between two nucleons, but our NNLO results are indicative of the importance of the two-pion
exchange diagrams for pp™ppp 0. Similar HBx PT two-pion exchange diagrams have been considered in

w xcalculating the scattering amplitudes for higher partial waves in NN collision 24 . It is to be noted, however,
that the higher partial wave amplitudes, which are only sensitive to peripheral NN scattering, can probe

2 This type of comparison is possible because, at threshold, effectively only one kind of spin operator appears in the pp™ ppp 0

transition operator.
3 With DW this cancellation will not occur due to the different energy and three-momentum dependences.
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Table 2
th Ž .Sizes of the K type of diagrams, shown in Figs. 2 and 5, relative to the n s 1 pion rescattering diagram, Fig. 1 b . The ratio R definedK

Ž . Ž .in the text is given for three sets A, B and C of parameters c , see the text and Table 11,2,3

A B CR R RK K K

K s I y0.70 y0.38 y0.53
K s II 6.7 3.6 5.1
K s III y6.7 y3.6 y5.1
K s IV 9.5 5.1 7.2
K s V 0.18 0.10 0.14
K s VI 0.14 0.08 0.11
K s VII 2.6 1.9 2.0

two-pion exchange contributions only for low three-momentum transfers. By contrast, in the NN™NNp

reaction, the two-pion exchange diagrams are probed in a very different kinematical regime of ‘‘high’’ energy-
and three-momentum transfers between the two nucleons. It is therefore not surprising that the roles of the

w xtwo-pion exchange diagrams in our calculation are very different from those discussed in Ref. 24 .
The diagrams shown in Fig. 4 generate effective form factors at the pion-nucleon rescattering vertex in

TT Žq1.. According to Table 2, the contributions of the corresponding operators, R and R , are less than 20%V V I

and 15% , respectively. Thus, the higher chiral-order vertex corrections to TT Žq1. are found to be small, as
expected from the general tenets of x PT. Meanwhile, Table 2 shows that R s 1.9;2.6. This means that theV II

Ž .combined pion rescattering term is given by the sum of Fig. 1 b and the Type VII contribution.
w xGedalin et al. 22 considered some NNLO diagrams within HBx PT. Numerically, they have found that the

Ž .sum of M and M in our notation is large. This feature is confirmed by our numerical result. It is worthIV V

emphasizing, however, that of these two operators M is by far the predominant one. Although Gedalin et al.IV
Ž .also considered M our notation , they left out M and M . According to Table 2, M and M are of equalII I III II III

importance, and their individual contributions are comparable to that of M . Our final remark is that our resultsIV
Ž 2 . Ž . w xcontain a new loop-integral I v,ÕPp, p , Eq. 23 , which does not appear in Ref. 22 .0

5. Conclusions

We have evaluated the pp™ppp 0 transition operators to NNLO in chiral expansion. It was found that x PT
vertex corrections to the lower chiral order transition operators, TT Born and TT Resc are indeed small. Thus, for
this limited type of diagrams, x PT expansion seems to be under control. Meanwhile, the two-pion exchange
contributions are found to be very large in our estimates. This result is consistent with the expectation that the
pp™ppp 0 reaction is sensitive to ‘‘heavy’’-meson exchanges between nucleons. The phenomenologically

w ximportant s-meson contributions 4 seem to have discernible ‘‘representatives’’ among the NNLO chiral
perturbation diagrams considered here. It is not obvious whether one can interpret the large contributions from
the individual graphs in Figs. 2 and 3 as evidence for the non-convergence of the x PT expansion. These types
of graphs make their first appearance only in the NNLO calculations, and therefore the convergence question
can only be settled by calculating corrections to these NNLO diagrams. We expect that the loop corrections to
the individual diagrams in Fig. 2 will be smaller in magnitude. However, two-pion exchange diagrams of chiral
order n s 3 might have magnitudes comparable to our n s 2 terms since the diagrams in Fig. 2 are only part
of the effective s- exchange.

To simulate more realistic s-exchange it may also be necessary to explicitly include intermediate D-particles
in Figs. 2 and 3, but that would require a thorough recalculation of many previous results. In a forthcoming

w xpaper 19 we hope to present a detailed discussion of DW calculations which are required to obtain realistic
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cross sections for pp™ppp 0, as well as the details of a renormalization procedure relevant to an NLLO
calculation. Due to large energy-momentum transfers involved in the NN™NNp reaction, a full DW
calculation can modify significantly the numerical results reported in this Letter. Our finding that the ‘‘recoil’’

Ž y1 . Resccorrections OO m to TT are large points to the necessity of examining the use of the static heavy-baryonN
Ž . Ž . Ž‘‘propagator’’, 1r ÕPp . As a first pragmatic step, one can think of replacing 1r ÕPp with 1r ÕPpy

2 Ž ..p r 2m , which implies, however, an extension of HBx PT adopted in this work.N
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