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Pion-nucleon scattering and the nucleonS term in an extended linear S model

V. Dmitrašinović and F. Myhrer
Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208

~Received 10 September 1999; published 19 January 2000!

A modified linearS model that allows forgA51.26 by addition of vector and pseudovectorpN coupling
terms was discussed by Bjorken and Nauenberg and by Lee. In this extended linearS model the elasticpN
scattering amplitudes satisfy the relevant chiral low-energy theorems, such as the Weinberg-Tomozawa rela-
tion for the isovectorpN scattering length and in some cases Adler’s ‘‘consistency condition.’’ The agreement
of the isospin symmetricpN scattering length with experiment is substantially improved in this extendedS
model as compared with the original linear one. We show that the nucleon sigma term (SN) in the linear and
the extendedS models with three different kinds of chiral symmetry breaking terms are identical. Within the
tree approximation the formal operator expression for theSN term and the value extracted from thepN

scattering matrix coincide. Large values ofSN are easily obtained without anyss̄content of the nucleon. Using
chiral rotations the Lagrangian of this extendedS model reproduces the lowest-orderpN chiral perturbation
theory Lagrangian.

PACS number~s!: 14.20.Dh, 13.75.Gx, 25.80.Dj
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I. INTRODUCTION

Gell-Mann and Levy’s~GML! linear S model is a prin-
cipal example of spontaneously broken chiral symmetry
strong interactions@1#. It is known that the linearS model
does not always give the correct phenomenology, e.g.,
value of the isoscalar pion-nucleon scattering length is
large. We shall show that in the extended linearS model to
be presented in this paper, the phenomenology is cons
ably improved compared to the original GML model. A
other alleged drawback of the linear sigma model is th
apart from chiral symmetry, the model has not been c
nected directly to QCD. Recently, however, it has be
shown that the model can be thought of as a low-ene
effective theory of Coulomb gauge QCD, albeit in the un
alistic limit of maximal UA(1) symmetry breaking@2#.

Another ‘‘weakness’’ of the linearS model is that the
value of the axial coupling strengthgA equals one. It is
known that the one-loop ‘‘radiative’’ corrections in the line
S model lead to the renormalization of the nucleon part
the axial current@3#, but it is not widely known how to
incorporate that kind of correction, i.e., a value ofgAÞ1,
into an effective~tree-level! Lagrangian. In some publica
tions a proposed ‘‘solution’’ is to multiply the total axia
currentJm5

a 5Am
a 1am

a by gA where the nucleon part of th

axial current isAm
a 5c̄gmg5(ta/2)c, and the meson part o

the axial current isam
a 5s]mpa2pa]ms. Another ‘‘solu-

tion’’ posits the same, but this time just forAm
a . Both of

these ‘‘solutions’’ are inconsistent with the chiral symme
of the model. The first one violates the chiral charge alge
by leading to

@Q5
a ,Q5

b#5gA
2 i«abcQcÞ i«abcQc. ~1!

The second ‘‘solution’’ leads to Eq.~1! for the nucleon part
of the axial charge, and in addition to a nonconserved a
Noether current even in the chiral limit since the equations
motion havenot been modified.
0556-2813/2000/61~2!/025205~11!/$15.00 61 0252
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In an earlier publication@4# one of us reinitiated the stud
of a venerable, but little-known extension of the linearS
model, see, e.g., Ref.@5#. This extension allows the nucleo
axial coupling constantgA to be different from unity without
violating chiral symmetry. The extra term introduced in t
linear S model is a nonrenormalizable, derivative-couplin
term, analogous to the Pauli anomalous~electron! magnetic
moment term that describes the finite one-loop radiative c
rection in QED, and that is often introduced into other effe
tive Lagrangians. This extended linearS model allows one
to study thegA dependence of thepN scattering lengthsapN

and of the nucleonS term SN . It is well known thatapN
(2)

depends crucially on the value ofgA , whereas theSN de-
pendence ongA is unknown@6#. We shall display this depen
dence and show that a large value ofSN can easily be ob-

tained without recourse to anyss̄ component of the nucleon
We can also reproduce the new, tiny experimental value
the isoscalarpN scattering lengtha0

(1) . Our methods and
results are potentially important for studies of nuclear mat
because the quark condensate in nuclear matter is determ
by the n-nucleonS terms @7,8#, and the issue of (P-wave!
pion condensation depends crucially ongA being different
from unity @9#.

The purpose of this study is to use the extended lineaS
model to derive some of the low-energy theorems for
elasticpN scattering amplitude, to calculate thepN scatter-
ing lengths, and to discuss the nucleonS term SN . We
believe that at least some of the generally valid predictio
of chiral symmetry are most economically obtained in th
model. Throughout this paper we shall use the tree appr
mation, save for one illustrative example done at the o
loop self-consistent approximation level, shown in Append
A. In order to explore the various possibilities, and to fac
tate comparison with earlier studies of the Gell-Mann–Le
linearS model we introduce three different chiral symmet
breaking (xSB) terms, as in Refs.@6,9#. For two of the three
xSB terms, the effects on the pion’s mass appear at the
©2000 The American Physical Society05-1
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V. DMITRAŠINOVIĆ AND F. MYHRER PHYSICAL REVIEW C61 025205
level, whereas the thirdxSB term’s effect is only visible a
the one-loop level, see Appendix A.

This paper falls into six sections. In Sec. II we define t
extended linearS model, present thexSB terms and the
canonical field variables, and show that the Noether cha
close the chiral algebra althoughgAÞ1. Section III is de-
voted to a derivation of the elasticpN scattering amplitude
the Adler consistency condition and the scattering lengths
Sec. IV we examine the nucleon sigma termSN , first from
the ~formal! operator point of view and second as extrac
from the elasticpN scattering amplitude in the first Bor
approximation and draw conclusions from the comparison
the two methods. In Sec. V we examine the connection w
the effective pion-nucleon chiral perturbation theory, a
Sec. VI summarizes the results.

II. THE EXTENDED LINEAR S MODEL

The extendedS model is the linearS model modified by
adding a pseudovector pion-nucleon coupling to the pseu
scalar one@4#. This model allows a nucleon axial curre
with arbitrary gA(Þ1). The Lagrangian density of thi
model is given by

L5c̄ i ]”c2g0c̄@s1 ig5p•t#c1
1

2
@~]ms!21~]mp!2#

1
1

2
m0

2~s21p2!2
l0

4
~s21p2!21LxSB

1S gA21

f p
2 D F S c̄gm

t

2
c D •~p3]mp!

1S c̄gmg5

t

2
c D •~s]mp2p]ms!G . ~2!

We assume that the parametersl0 and m0
2 are positive,

which ensures spontaneous symmetry breaking in the
approximation. The last line in Eq.~2! is a nonrenormaliz-
able derivative-coupling term, introduced by Bjorken a
Nauenberg and by Lee@5#. We shall focus on some conse
quences of adding this term to the linearS model Lagrang-
ian.

The chiral symmetry breaking (xSB) terms in the La-
grangian are those discussed in Refs.@6,9#

LxSB52HxSB5«1s2«2p22«3c̄c. ~3!

An example of a differentxSB term is discussed in, e.g
Ref. @8#. Each one of the three terms in Eq.~3! separately
breaks the chiral symmetry and is capable of shifting
pion mass, though not always in the tree approximation.
the three terms do not always predict the same physics in
specific instances. In particular they predict different shifts
the nucleon mass, see Ref.@6#, and, e.g., we find a differen
Goldberger-Treiman~GT! relation:gAM5gpNf p1«3.

As usual we choose the ground state of the model as
minimum of the meson interaction LagrangianLmeson

int with
respect to thes2 and p fields. This means shifting theS
02520
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field by its vacuum expectation value,^s&0[ f p , i.e., s
5 f p1s, where from the minimum requirement we obtain

~m0
22l0f p

2 ! f p52«1 . ~4!

The meson interaction Lagrangian in the new field varia
reads

2Lmeson
int 5

1

2
~ms

2s21mp
2 p2!1

1

2 f p
~ms

22mp
2 12«2!

3s~s21p2!1
1

8 f p
2 ~ms

22mp
2 12«2!~s21p2!2.

~5!

The resulting nucleon,s-meson, and pion masses are

M5«31g0f p , ~6a!

ms
252m0

213l0f p
2 , ~6b!

mp
2 52m0

21l0f p
2 12«25«1 / f p12«2 . ~6c!

The axial-vector Noether current

Jm5
a 5S c̄gmg5

t

2
c D a

2~p]ms2s]mp!a1S gA21

f p
2 D

3F S c̄gmg5

t

2
c•pDpa1s2S c̄gmg5

t

2
c D a

1sS c̄gm

t

2
c3pD aG , ~7!

is partially conserved in this model. The divergence of t
axial current is

]mJm5
a 5~«112«2s!pa2«3c̄ ig5tac. ~8!

When we assume that the physical one-pion state,up&, does
not have anyusp& or uNN̄& components, the matrix elemen
of the divergence of the axial current~usings5 f p1s) for
the one-pion-to-vacuum transition gives

mp
2 f p5«112 f p«2 . ~9!

To see explicitly that the purely one-nucleon part of the ax
current has acquired the coupling constantgAÞ1, Eq. ~7! is
rewritten with the shiftedS field (s5 f p1s), and we obtain

Jm5
a 5gAS c̄gmg5

t

2
c D a

1 f p]mpa1~s]mp2p]ms!a

1S gA21

f p
2 D F S c̄gmg5

t

2
c•pDpa1s~2 f p1s!

3S c̄gmg5

t

2
c D a

1~ f p1s!S c̄gm

t

2
c3pD aG . ~10!

The axial charge density, however,
5-2
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r5
a5J05

a 5c†g5

ta

2
c2~paPs2sPp

a !, ~11!

retains its linearS model form when written in terms o
canonical fields and their associated canonical mome
@10#:

Ps5ṡ2S gA21

f p
2 D S c†g5

t•p

2
c D , ~12a!

Pp
a 5ṗa1S gA21

f p
2 D F S c†

t3p

2
c D a

1sc†g5

ta

2
cG .

~12b!

The axial charge density, Eq.~11!, and the vector charge
density

ra5J0
a5c†

ta

2
c1«abc~pbPp

c !, ~13!

close the algebra

@ra~0,x!,rb~0,y!#5 i«abcrc~0,x!d~x2y!, ~14a!

@r5
a~0,x!,r5

b~0,y!#5 i«abcrc~0,x!d~x2y!, ~14b!

@r5
a~0,x!,rb~0,y!#5 i«abcr5

c~0,x!d~x2y!, ~14c!

when we assume the canonical~anti!commutation relations

$ca~0,x!,Pc
b ~0,y!%5 idabd~x2y!, ~15a!

@s~0,x!,Ps~0,y!#5 id~x2y!, ~15b!

@pa~0,x!,Pp
b ~0,y!#5 idabd~x2y!. ~15c!

Thus we see that in this extendedS model only the spatia
part of the nucleon axial current is renormalized and
algebra of the charge operators is satisfied.

III. THE ELASTIC pN SCATTERING AMPLITUDE

We follow the discussion and methods of the linearS
model in Ref.@6#, but extended to include the new terms
the Lagrangian shown in the last line of Eq.~2!. The main
consequence of this modified Lagrangian is that the orig
pN coupling constantg0 is renormalized togpN5g0@1
1(gA21)(M /g0f p)#, where the nucleon mass isM5g0f p

1«3. This leads to a different set ofS-wave scattering
lengths and to the GT relation written above. Otherwise
the tree approximation the nucleonS terms are identical to
those found by Campbell@6# as we show below.

A. The scattering amplitude

The elasticpN scattering amplitudeT is usually written
in terms of its two isospin and two Dirac matrix componen
as follows:
02520
ta
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n

Tab5T(1)dab1T(2)
1

2
@ta ,tb#,

T5A1B
1

2
~k” 11k” 2!, ~16!

where the incoming and outgoing pion’s momenta arek1 and
k2, anda andb are their isospin indices. An explicit calcu
lation of the four tree-level diagrams in Fig. 1 leads to

A(1)5S g0

f p
D F S ms

22mp
2 12«2

ms
22t D 12~gA21!

1~gA21!2S M

g0f p
D G , ~17a!

A(2)50, ~17b!

B(1)5g0
2F11~gA21!S M

g0f p
D G2F 1

M22s
2

1

M22uG ,
~17c!

B(2)5g0
2F11~gA21!S M

g0f p
D G2F 1

M22s
1

1

M22uG
2

1

2 f p
2 ~gA

221!, ~17d!

wheres, t andu are the standard Mandelstam variables, a
s1t1u52M21k1

21k2
2. Below we will use the traditional

kinematical variables in the expressions for the amplitud

n5
1

4M
~k11k2!•~p11p2!5

s2u

4M
, ~18a!

FIG. 1. The elasticpN scattering amplitude:~a! the direct and
~b! crossed nucleon-pole diagrams,~c! the contact, or sea-gull dia
gram, and~d! thes-meson-pole diagram. The dashed line denote
pion; the zig-zag line denotes as meson, the solid line denotes
nucleon.
5-3
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nB52
k1•k2

2M
5

t2k1
22k2

2

4M
. ~18b!

We follow standard notation and useD (6) as an abbreviation
for

D (6)[A(6)1nB(6). ~19!

In the tree approximation the extendedS model isospin an-
tisymmetric amplitudeD (2) then reads for on- and off-mass
shell pions

D (2)~n,nB ,k1
2 ,k2

2!5S gpN
2

M D nF nB

nB
22n2 2S 12gA

22

2M D
3S 11gA

21 2«3

M D G1O~n« i
2!, ~20!

where we have used our GT relation. The second term in
square bracket}(12gA

22)/2M is absent in the regularS
model wheregA51. To obtain the tree-level isospin sym
metric amplitude we rewrite Eq.~17a! as follows:

A(1)5S gpN
2

M D F12gA
22S mp

2 2t22«2

ms
22t D 1gA

22 «3

M G1O~«2!,

~21!

and Eq.~17c! is rewritten as

B(1)5
gpN

2

M

n

nB
22n2 1O~«2!, ~22!

which gives, even for off-mass-shell pions,

D (1)~n,nB ,k1
2 ,k2

2!5S gpN
2

M D
3H nB

2

nB
22n2 2gA

22S mp
2 2t22«2

ms
22t D

1gA
22 «3

M J 1O~«2!. ~23!

Note that Eq.~23! is zero forn5nB50 and t5mp
2 only if

«25«350. This means both the isospin symmetricD (1) and
antisymmetricD (2) amplitudes have Adler zerosonly if
PCAC, in its narrow definition, is satisfied as an operat
equationin the extendedS model. This can also be seen b
following Campbell’s analysis@6# of the original linearS
model. The main difference from the original linearS model
is that thepN coupling constant is renormalized fromg0 in
the original linearS model togpN5gAg0@11(«3 /g0f p)(1
2gA

21)#, see Eq.~17c!, and that the GT relation become
gAM5gpNf p1«3, after ‘‘turning on’’ «3Þ0, i.e., at the
tree-level the GT relation acquires an ‘‘anomaly’’}«3.

B. Scattering lengths

ThepN scattering lengths are given by Eqs.~17a!–~17d!:
02520
e

a0
(6)5

D threshold
(6)

4p~11mp /M !
5

1

4p~11mp /M !

3@A(6)1mpB(6)# threshold, ~24!

which leads to the standard result for the isospin-symme
scattering length in the«25«350 ~but «1Þ0 since mp

Þ0) limit

a0
(1)5

gpN
2

4p~11mp /M ! S mp

M D F12
1

12~mp/2M !2

2gA
22S mp

ms
D 2G 1

mp

.
gpN

2

4p~11mp /M ! S mp

M D
3F2S mp

2M D 2

2gA
22S mp

ms
D 2G 1

mp
. ~25!

The value fora0
(1) is smaller than the value in the ordinar

linearS model, see, e.g., Delormeet al. @8#, due to the factor
gA

22 in front of the second term. This will be discussed fu
ther in Sec. IV C.

The isospin antisymmetric scattering length equals
standard Weinberg-Tomozawa result

a0
(2)5

gpN
2

4p~11mp /M ! S mp

M D 2F 1

12~mp/2M !2 2~12gA
22!G

3S 1

2mp
D1O~«3

2!.
gpN

2

8p~11mp /M ! S mp

M D 2S 1

gA
2mp

D
1•••. ~26!

In the case when« iÞ0, i 51,2,3, we have

a0
(1).

2gpN
2

4p~11mp /M ! S mp

M D H S mp

2M D 2

1gA
22F S mp

2 22«2

ms
2 D 2S «3

M D G J 1

mp
1O~« i

2!,

~27!

for the isoscalar scattering length. Note the negative sign
front of the «3 term which allows for either sign of this
scattering length. The isovector scattering length is

a0
(2).

gpN
2

8p~11mp /M ! S mp

M D 2 1

gA
2

1

mp
1O~«3

2!, ~28!

unchanged from the Weinberg-Tomozawa result. To co
pare these results with experiment we will determine the v
ues of thexSB coefficients« i from some other source, se
Sec. IV C and Appendix B. However, as all threexSB terms
5-4
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in Eq. ~3! with their full strengths are not possible witho
overcounting, some care with the interpretation of these
sults is necessary.

IV. THE S TERM

The pion-nucleonSN term is of importance for investiga
tions of the^c̄c& condensate in nuclear matter@7,8#, and in
determination of the flavor content of the nucleon@11#. As
we shall show the extendedS model gives a very interestin
answer to the question of the flavor content of the nucle
First we discuss the nucleonSN term as obtained from theS
operator and then evaluate the nucleonSN term from thepN
amplitude. We shall show that the connected one-nucl
matrix element of theS term operator coincides with anothe
~operational! definition of the nucleonS term based on the
pion-nucleon elastic scattering amplitude in the tree appr
mation. Finally we make a short estimate of the possi
values of theSN term in this model and also discuss th
possible values of thepN scattering lengths.

A. Operator definition

The S operator is defined as

Sab5†Q5
a ,@Q5

b ,HxSB#‡,

S5
1

3 (
a5b51

3

Sab. ~29!

Using a chiral Ward identity this operator appears after t
applications of Sakurai’s ‘‘master formula’’ to any elast
S-matrix element with one pion in the initial and one in th
final state@12,13#. Herea,b are the flavor indices of the axia
chargeQ5

a5*dxr5
a appropriate to the corresponding pseud

scalar mesons~pions!, and HxSB is the chiral symmetry-
breaking Hamiltonian density. In principle all of the objec
entering Eq.~29! are meant to be exact Heisenberg repres
tation operators. As we do not have exact solutions to
quantum-field equations of motion, we will discuss two a
proximate matrix elements of theSab operator for two cases
~i! the vacuum expectation valuê0uSu0& and ~ii ! the
nucleon expectation value of its volume integr
^Nu*dxS(x)uN&. The vacuum matrix element is well unde
stood@14#, so it leads to valuable constraints on the form
the xSB terms. As for the nucleon matrix element, we co
pare the results obtained from the above operator defini
using the equations-of-motion, with another derivation ba
on the off-shell elasticpN scattering amplitude.

1. The S vacuum expectation value

The vacuum expectation value of theS operator yields
Dashen’s formula@13#

~ f m2f !ab5 f amab
2 f b52^0u†Q5

a ,@Q5
b ,HxSB#‡u0&. ~30!

This formula describes the lowest orderxSB correction to
the otherwise vanishing pseudoscalar meson mass squ
(mps

2 ) for arbitrary chiral symmetry-breaking terms in th
02520
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Hamiltonian densityHxSB. When thexSB term is taken to
be the current quark mass in the QCD Hamiltonian

HqxSB5q̄mq
0q5mu

0ūu1md
0d̄d,

Eq. ~30! yields

~ f psmps
2 f ps!

ab52^0u@Q5
a ,@Q5

b ,q̄mq
0q##u0&

52^0uq̄HH mq
0 ,

la

2 J ,
lb

2 Jqu0&, ~31!

where la, are the Gell-Mann matrices. By averaging ov
a51,2,3 one finds the Gell-Mann–Oakes–Renner~GMOR!
relation between the pion mass and decay constant on
hand and the current quark mass Hamiltonian vacuum ex
tation value on the other:

mp
2 f p

2 52@mu
0^0uūuu0&1md

0^0ud̄du0&#, ~32!

To make contact with our previous discussion we ap
Eq. ~30! to our extendedS model with the three kinds o
xSB terms of Eq.~3!. We use the canonical commutatio
relations, Eqs.~15a!,~15b!, and the axial charge, Eq.~11!, to
obtain

†Q5
a ,@Q5

b ,HxSB~0!#‡

52«1sdab22«2~s2dab2papb!1«3c̄cdab.

~33!

Taking the vacuum expectation value of this expression
find

~mp f p!25«1^0usu0&12«2^0us2u0&2«3^0uc̄cu0&,
~34!

This relation goes beyond the tree approximation of Eq.~6c!
as we show in Appendix A. We shall first examine Eq.~34!
for the three distinct types of thexSB Hamiltonian in order
to determine/normalize the values of the coefficients« i .

~i! « i50 for i 52 and 3 leads to

«1^0usu0&5~mp f p!2, ~35!

i.e., «15mp
2 f p .

~ii ! « i50 for i 51 and 3 leads to

2«2^0us2u0&5~mp f p!2, ~36!

i.e., «25 1
2 mp

2 .
~iii ! « i50 for i 51 and 2 leads to the relation

2«3^0uc̄cu0&5~mp f p!2. ~37!

We remark that this last relation looks similar to a nuc
onic version of the GMOR relations, Eq.~32!. To make this
analogy more obvious, we introduce the explicitxSB
‘‘bare’’ nucleon mass matrix in our extendedS model La-
grangian, Eq.~2!, and compare it withLxSB, Eq. ~3!. The
correspondingxSB Hamiltonian density
5-5
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HNxSB5c̄MN
0 c5M p

0p̄p1Mn
0n̄n,

is used in Eq.~30! to obtain the relation

mp
2 f p

2 52@M p
0^ p̄p&01Mn

0^n̄n&0#. ~38!

The obvious conclusion is that«35MN
0 , the averaged

‘‘bare’’ nucleon mass, as expected from Eqs.~3! or ~6a!. We
naturally express in terms of the current quark massesMN

0

53m̄q
05 3

2 (mu
01md

0).23 MeV.
The basic underlying assumption of chiral perturbat

theory as an effective hadronic field theory of QCD is th
thexSB part of the Hamiltonian is a small perturbation. Tw
theories with different degrees of freedom~DF!, e.g., quarks
in one and hadrons in another, can be viewed as effecti
mirroring each other provided both satisfy the same ch
symmetry transformations. For example, in a model w
hadronic DF1 the xSB part due to the current quark ma
term in QCD is effectively mirrored in a pion mass ter
~plus possibly other terms with the same transformat
properties!. Chiral perturbation theory goes one step furth
and includes~to a given chiral order! all possiblexSB terms
in the Hamiltonian. The so-called low energy coefficien
multiplying thesexSB terms are then fit to the experiment
data, though they could also be modelled in an underly
quark model@15#.

In the following we argue that the cases~i!, ~ii !, and~iii !
could be interchangeable, at least as far as the nonzero
mass is concerned. We wish to establish to what extent
interchangeability of thexSB terms actually holds in variou
approximations.~They certainly are not equivalent when
comes to nonvacuum matrix elements of theS term, as we
shall show below.! In the tree approximation the first tw
terms on the right-hand side of Eq.~34! are the same as thos
in Eq. ~9!. Thus we see that the bare~current! nucleon mass
term with «3Þ0 does not lead to a massive pion in the tr
approximation. In Appendix A we show how the ba
nucleon massM̄N

0 5«3Þ0 produces a nonzero pion ma

1Note that two sets ofxSB terms may effectively mirror eac
other under a ‘‘lower’’ chiral symmetry like SUL(2)3SUR(2), but
be very different under a ‘‘higher’’ symmetry such a
SUL(3)3SUR(3). For example, the chiral transformation prope
ties of both the current quarkHqxSB and the bare nucleon mass ter

HNxSB are those of (2,2̄) % (2̄,2). However, in theNf53 case the
quarks form an SU~3! triplet, which means that their bare ma

terms transform as (3,3)̄ % (3̄,3), whereas the spin-1/2 baryons a
part of an SU~3! octet, which means that theirxSB terms transform
as either (8,8) or (8,1)% (1,8) under the chiral SUL(3)3SUR(3)
group@14#. This group theoretical difference implies different pse
doscalar meson mass spectra in these two models ofxSB. Since we
know that the observed pseudoscalar masses conform rather
with the current quark mass model@14#, we are forced to conclude
that the baryon-antibaryon contribution to the pseudoscalar m
spectrum is supressed. This raises the question to what exten
may apply the baryon current mass model ofxSB and«3Þ0 in the
two-flavor sector.
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mpÞ0 in agreement with the Dashen formula, Eq.~34!, at
the one-nucleon-loop self-consistent approximation lev
One immediate conclusion is that the nominally identic
forms of xSB terms in Eq.~34! do not always produce the
same kinds of effects at the same level of approximati
even if the approximations conserve chiral-symmetry in
chiral limit « i50, i 51,2,3.

Another consequence of Eq.~34! is that if one assumes
the existence of more than onexSB term, then not all of such
terms can have their ‘‘full’’ strengths. Specifically, if on
wishes to have more than onexSB term in the Hamiltonian,
Eq. ~3!, the coefficients« i must be rescaled. The new ‘‘sca
ing coefficients’’a i are defined as

«15a1mp
2 f p , ~39a!

«25a2

1

2
mp

2 , ~39b!

«35a3M̄N
0 , ~39c!

subject to the condition of Eq.~34! that ( i 51
3 a i51. Similar

problems arise in other quantities sensitive toxSB terms,
such as the scattering lengths, Eqs.~27! and ~28! as in, e.g.,
Ref. @8#.

2. The nucleonS term

The nucleonS term (SN) is, by definition, the connected
elastic one-nucleon matrix element of the spatial~volume!
integral2 of the S operator

SN5 K NU E dxS~x!UNL
connected

5 K E dxS~x!L
N

2 K E dxS~x!L
N

disconnected

5
1

3 (
a5b51

3

^Nu†Q5
a ,@Q5

b ,HxSB#‡uN&

2~2p!3d (3)~0!
1

3 (
a5b51

3

^0u†Q5
a ,@Q5

b ,HxSB~0!#‡u0&

5E dx$^S~x!&N2^S~0!&0%, ~40!

where HxSB5*dxHxSB(x). In this application it is prefer-
able to quantize the system in a finite volumeV, so as to
avoid dealing with a new infinity in the form of a Dirac delt
function of zero argument, (2p)3d (3)(0)5 limV→`(V
5*Vdx). Subtraction of the disconnected term procee
naturally using the equations of motion.

Initially we haveell

ss
ne

2This accounts for the different dimensions of the vacuum a
nucleonS terms.
5-6
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1

3 (
a5b51

3 E dx†Q5
a ,@Q5

b ,HxSB~x!#‡

5E dxF2«1s22«2S s22
1

3
p2D1«3c̄c G

52V~«112«2f p! f p2E dx†s~«114«2f p!2«3c̄c‡

1O~s2!1O~p2!. ~41!

Using Eq. ~5! we obtain the equations of motion for th
shifteds field s

@]21ms
2 #s52g0c̄c2S ms

22mp
2 12«2

2 f p
D ~3s21p2!

1S ms
22mp

2 12«2

2 f p
2 D s~s21p2!1S gA21

2 f p
2 D

3@]m~c̄gmg5t•pc!1~ c̄gmg5tc!•~]mp!#.

~42!

The lowest-order perturbative solution is the following int
gral equation defined in terms of the free Klein-Gord
Green’s functionDF(x;ms):

s~x!5E d4yDF~x2y;ms!H g0c̄~y!c~y!

1S ms
22mp

2 12«2

2 f p
D @3s2~y!1p2~y!#

1S ms
22mp

2 12«2

2 f p
2 D s~y!@s2~y!1p2~y!#1S gA21

2 f p
2 D

3@]m~c̄gmg5t•pc!1~ c̄gmg5tc!•~]mp!#J , ~43!

which upon inserting into the definition~41! leads to

SN5^S&N
connected

5
1

3 (
a5b51

3 E dx^Nu†Q5
a ,@Q5

b ,HxSB~x!#‡uN&connected

52~«114«2f p!E dx^s~x!&N2«3E dx^c̄~x!c~x!&N

1O~s2!1O~p2!

52g0~«114«2f p!E dxE d4yDF~x2y;ms!

3^c̄~y!c~y!&N1«3E dx^c̄~x!c~x!&N

1O~s2!1O~p2!

5
g0

ms
2 ~«114«2f p!1«31O~«2!•••, ~44!
02520
where the dots represents higher order terms of the fi
which are neglected since we are working within the tr
approximation. Using Eq.~6a! and the tree approximation
result, Eq.~9!, we find

SN5M S mp
2 12«2

ms
2 D 1«31O~«2!. ~45!

Naively we expect the value ofSN to be given by the sum o
the current quark masses@11# }«3 which is reflected in a
nonzero ‘‘bare’’ nucleon mass. The presence of the sc
field which induces the spontaneous chiral symmetry bre
ing in our model, changes radically the value ofSN , see Eq.
~45!. We shall return to this expression in Sec. IV C. Sin
there are no elementary scalar fields in the QCD Lagrang
it is difficult to demonstrate how this could happen in QC
but we note that there are scalarboundstates in QCD.3

B. The S term from the scattering amplitude

The t-dependent pion nucleonSN term can also be de
fined in terms of the on-mass-shell isospin symmetric am
tude as follows@6,12,13#:

D (1)~n,nB ,k1
25mp

2 , k2
25mp

2 !

[DPV Born
(1) ~n,nB , k1

25mp
2 , k2

25mp
2 !

1
SN~ t !

f p
2 , ~46a!

DPV Born
(1) ~n,nB ,k1

25mp
2 , k2

25mp
2 !5S gpN

2

M D nB
2

nB
22n2 ,

~46b!

where we have definedDPV Born
(1) as given by the diagrams

Figs. 1~a! and 1~b!, using a pure pseudovector~PV! pN in-
teraction Lagrangian. Equivalently

D̃ (1)~n50, nB50, k1
25mp

2 , k2
25mp

2 !5
SN~ t52mp

2 !

f p
2 ,

~47!

which when evaluated at the unphysical Cheng-Dashen p
gives the value ofSN(t52mp

2 ). Here as usual

D̃ (6)5D (6)2DPV Born
(6) . ~48!

When we compare Eq.~47! with Eq. ~23!, we obtain the
expression

3As a simple illustration of this point one may take the example
the NJL model in which there are no elementary scalar mesons
the fermion~in that case the constituent quark! S term is dominated
by the scalar bound state’s contribution.
5-7
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SN~ t !5«32M S mp
2 2t22«2

ms
22t D 1O~«2!,

SN~ t52mp
2 !.«31M S mp

2 12«2

ms
2 D 1O~«2!, ~49!

where in the last step we assumemp
2 !ms

2 , and as above we
assumemp

2 }« i , i 51,2,3. Equation~49! is in agreement
with the canonical result of Eq.~45! and with the original
linear S model result of Campbell@6#.

C. Comparison with experiment

The S operator, Eq.~29!, is often identified with the chi-
ral symmetry breaking Hamiltonian itself. In two of the thre
cases in Eq.~33!, the nucleonS term is a measure of th
xSB in the nucleon. In those cases it equals the shift of
nucleon massdM due to thexSB terms in the Hamiltonian
This reasoning underlies the standard interpretation of
nucleonS term as being a measure of the strangeness
tent of the nucleon@11#. A large value ofSN.65 MeV has
often been interpreted as a sign of a substantialss̄ content of
the nucleon. We shall show that in the extended lineaS
model, Eq.~2!, such a large values forSN(t52mp

2 ) can be
obtained without any strangeness content of the nucleon

In the tree approximation the value of theSN term in
terms of the values of the parametersa i of Eqs.~39a!–~39c!
is

SN5MN
0 ~12a12a2!1M ~11a2!S mp

2

ms
2 D 1O~«2!,

~50!

where we useM̄N
0 .23 MeV, M5940 MeV, and mp

5140 MeV. For possible values of thes-meson mass in the
interval ms5400–1400 MeV @2# we have M (mp /ms)2

5115–9 MeV, and hence

SN5~12a12a2!323 MeV1~11a2!

3~11529! MeV1O~«2!. ~51!

This range of values easily encompasses the experimen
allowed range of 45–75 MeV, for sufficiently lightms and
for reasonable values of« i , i 51,2,3. Note, however, tha
due to the large uncertainty inms this experimental value
can not be used to effectively fix the above linear combi
tion of thea i parameters.

To compare thepN scattering lengths, Eqs.~27! and~28!,
with experimental values, we discuss the general case« i
Þ0, i 51,2,3:
02520
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a0
(1).

2gpN
2

4p~11mp /M ! S mp

M D
3H S mp

2M D 2

1gA
22F ~12a2!S mp

2

ms
2 D 2a3S MN

0

M D G J
3

1

mp
1O~«2! ~52!

and

a0
(2).

gpN
2

8p~11mp /M ! S mp

M D 2 1

gA
2

1

mp
1O~«3

2!. ~53!

Despite the tiny ‘‘bare’’ nucleon massMN
0 !M the value of

the isoscalar scattering lengtha0
(1) shows significant depen

dence on both thea2 and a3 parameters for values ofms

<MN . In the extended linearS model the theoretical value
of a0

(1) can easily reproduce the ‘‘old’’ experimental valu
a0

(1)uexpt520.010(4)mp
21 , Ref. @16#, and can have eithe

sign with extreme values ofa i parameters. Recent pioni
atom experiments allow fora0

(1) values of comparable siz
of either sign if only hydrogen data are taken into acco
@17#. The addition of the latest pionic deuteron data can
the sign and definitely reduces both the mean value and
uncertainties@17#. The new experimental value fora0

(1)uexpt

.60.0020(16)mp
21 is much~almost 50 times! smaller than

the ‘‘natural’’ size obtained from the usualLxSB and requires
further cancellations among these small terms. Thus, this
est value ofa0

(1)uexpt appears to be ofO(«2). In order that
our O(«2) calculation of thea0

(1) S-wave scattering length
~52! reproduce this very small experimental value, a ve
delicate cancellation between the various terms must t
place in our model that makes it very sensitive to botha2
anda3 and to the value ofms . We conclude that the presen
approximate calculation is not sufficiently precise to be re
ably and profitably compared with the most recent data.

To O(«) the isospin antisymmetric scattering wave sc
tering lengtha0

(2) is independent ofa i . The leading order
~Weinberg-Tomozawa! prediction ~53! is within one stan-
dard deviation from the~old! mean experimental value
a0

(2)uexpt50.091(2)mp
21 , Ref. @16#. The new experimenta

value of a0
(2)uexpt50.0868(14)mp

21 , Ref. @17#, is subject to
the same caveats as for the isoscalar one described abo

V. RELATIONSHIP TO CHIRAL PERTURBATION
THEORY

A ‘‘chiral rotation’’ defined in the limitms→` by

N5AR~11 ig5t•j!c, ~54a!

p5Rf, ~54b!

s5 f pR~12j2!, ~54c!
5-8
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R5F11S f

2 f p
D 2G21

5@11j2#21, ~54d!

leads, by way of standard arguments@18,19# from the linear
S model Lagrangian without the extra derivative interacti
terms in Eq.~2!, to the nonlinear one

L2LxSB5N̄@ i ]”2M #N1
1

2
R 2~]mf!21RS 1

2 f p
D

3~N̄gmg5tN!•]mf2RS 1

2 f p
D 2

3~N̄gmtN!•~f3]mf!. ~55!

The above form of the nonlinear Lagrangian~55! differs
from Weinberg’s@18# by the absence of anad hocfactorgA
in front of the ‘‘pseudovector’’ coupling term. The source
this difference, as emphasized by Weinberg himself, was
need to have both the empiricalgA factor in the axial current
and the correct two-pion-nucleon contact interaction. W
shall now show that the extended linearS model, Eq.~2!,
leads to Weinberg’s nonlinearS model Lagrangian, i.e., tha
the extra terms in Eq.~2! promoted by Bjorken-Nauenber
and by Lee provide precisely the difference prescribedad
hoc by Weinberg. The extra terms in Eq.~2! can be written
in terms of the currentsVm ,vm andAm ,am :

Lbn5S gA21

f p
2 D F S c̄gm

t

2
c D •~p3]mp!

1S c̄gmg5

t

2
c D •~s]mp2p]ms!G

5S gA21

f p
2 D @Vm•vm1Am•am#. ~56!

The Vm
a andvm

a are

Vm
a 5RH ~12j2!S N̄gm

t

2
ND a

2N̄gmg5~t3j!aN

1jaN̄gm~t•j!NJ , ~57!

vm
a 5R 2~f3]mf!a. ~58!

Similarly,

Am
a 5RH ~12j2!S N̄gmg5

t

2
ND a

2N̄gm~t3j!aN

1jaN̄gmg5~t•j!NJ , ~59!

am
a 5R 2f p@]mfa~12j2!12ja~j•]mf!#. ~60!

Inserting these into Eq.~56! we find

Lbn5~gA21!R~N̄gmg5tN!•]mj, ~61!
02520
e

e

which when combined with Eq.~55! leads to Weinberg’s
nonlinear Lagrangian withgAÞ1. One can now write the
resulting nonlinear Lagrangian in the notation of chiral p
turbation theory and thus convince oneself that this
equivalent to the lowest order Lagrangian of Gasser, Sai
and Švarc ~GSŠ! @20,21#. Conversely, one should be able
convert finite-chiral-order terms in the GSSˇ nonlinear chiral
Lagrangian into extended linear ones. This is more than
academic point, for it makes it clear that the choice betwe
the linear and nonlinear realizations is a matter of con
nience. Quite often it is more expedient to work in the re
resentation wherein one has thes, or s fields from the be-
ginning, rather than building it up from the pions. Moreove
the linear Lagrangian is always a polynomial in the mes
fields, rather than a fractional, or even~transcedental! expo-
nential function ofp as is the case in the nonlinear realiz
tion.

VI. SUMMARY AND CONCLUSIONS

In this work we have shown that the extension of t
linearS model allowsgAÞ1 in the axial current in the linea
realization of chiral symmetry. The chiral charge algeb
holds in the extended linearS model despite the fact that th
spatial part of the nucleon axial current is renormalized
gA , because the nucleon axial charge is not renormalize

We evaluated the elasticpN scattering amplitude in the
tree approximation with three kinds ofxSB terms similar to
Ref. @6#. Thea0

(2) scattering length is now in agreement wi
the Weinberg-Tomozawa result, and we can obtain a v
small a0

(1) scattering length value in contrast to the origin
linear S model.

The SN term with three differentxSB terms was also
evaluated. In the tree approximation theSN term from the
canonical operator definition using the equations of mot
coincides with the result derived from thepN scattering am-
plitude. The vacuum matrix element of theS operator puts
one constraint on a linear combination of the three differ
xSB parameters« i , i 51,2,3. It is noteworthy that in our
extended linearS model a large value forSN can easily be
obtained without anyss̄ components in the nucleon. Th
reason for this is that the scalars meson can make a larg
contribution toSN depending on the value of the massms .
Finally we showed that a chiral rotation of the extended l
earS model Lagrangian leads to the lowest-orderpN xPT
Lagrangian in the limitms→`.

We close with several suggestions for future research~i!
Derive « i , for i 51,2,3 from quark models or QCD~for a
sketch of such a derivation in the NJL model, see Appen
B!. ~ii ! Apply the extendedS model to a re-evaluation of a
possible pion condensation in nuclear matter, wheregAÞ1 is
very important, but has not been consistently implemente
date.~iii ! Establish a relation between the free parameters
the extended linearS model and the low-energy constants
the xPT Lagrangian.

Note added in proof.After this paper was accepted it wa
brought to our attention that a paper by Carter, Ellis, a
Rudaz@24# covers some of the same ground.
5-9
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APPENDIX A: DASHEN’S RELATION
AT THE ONE-LOOP LEVEL

Here we follow Sec. V of Ref.@4# and show that at the
one-nucleon-loop level we can derive Eq.~34!. ~Analogous
calculations at the one-meson-loop self-consistent appr
mation level can be performed along the lines of Ref.@22#.!

The Hartree1RPA approximation can be defined by thr
Schwinger-Dyson integral equations:~i! the zero-body or
vacuum equation,~ii ! the one-body or the fermion mass ga
equation, and~iii ! the two-body or one-meson Bethe
Salpeter equation, shown in Figs. 5~a!, 5~b!, and 5~c! of Ref.
@4#, respectively. The Bethe-Salpeter equation for theNN̄
pseudoscalar scattering amplitudes is separable and has
exact solution in Hartree1RPA the following expression:

Dp~k!5
1

k22Sp
(RPA)~k!

, ~A1!

whereS (RPA)(k) is a sum of a single one-nucleon-loop p
larization diagram plus one ‘‘tree’’ diagram. The Schwinge
Dyson equations now read (v5 f p) @4#

v52
«1

m0
2

1l0

v3

m0
2

1
i

m0
2

g0NfE d4p

~2p!4

4M

p22M2 ,

~A2a!

M5M01g0v5«31g0v, ~A2b!

Sp
(RPA)~k!52«22m0

21l0v21g0
2Pp

(RPA)~k!, ~A2c!

where Eq.~A2b! is the same as Eq.~6a!. The pion polariza-
tion functionPp

(RPA)(k) can be written as

Pp
(RPA)~k!54iN fE d4p

~2p!4

1

p22M222iN fk
2I ~k!

5
1

M
^c̄c&022iN fk

2I ~k!, ~A3!

where we introduced the logarithmically divergent integra

I ~k!5E d4p

~2p!4

1

@p22M2#@~p1k!22M2#
. ~A4!

In order to prove the Dashen relation~34! we rewrite Eq.
~A2a! using Eq.~A3! as follows

2m0
21l0v25

«1

v
2

g0

v
^c̄c&0 . ~A5!

When we compare this equation with the tree approxima
results, Eq.~6c!, we see that the last term above is beyo
the tree-level. Insert this into Eq.~A2c! to find to lowest
order in« i ~ask→0):
02520
.

i-

s an

-

n
d

mp
2 5Sp

(RPA)~0!52«22m0
21l0v21

g0
2

M
^c̄c&0

5
«1

v
2

g0

v
^c̄c&012«21

g0
2

M
^c̄c&0

.
«1

v
12«22

«3

v2
^c̄c&0 , ~A6!

where we used the GT relation~A2b!. Equation ~A6! is
equivalent to Eq.~34! to leading order inxSB parameters.
Thus we have demonstrated the necessity of a self-consi
gap equation for the validity of Dashen’s formula whenxSB
is determined by Eq.~3!.

APPENDIX B: SKETCH OF A DERIVATION
OF «1 AND «3

We shall use the bosonization technique in a simple ch
quark ~NJL! model to show that«1 is related to«3 at the
quark level. This is just a sketch meant to illustrate an
proach to the more challenging case of nucleons.

The NJL model Lagrangian density is

LNJL5c̄@ i ]”2m0#c1G@~ c̄c!21~ c̄ ig5tc!2#. ~B1!

The substitution

2g0s5G~ c̄c!, ~B2a!

2g0p5G~ c̄ ig5tc!, ~B2b!

for one of the two quark bilinears leads to the~semi-
bosonized! linear s model interaction Lagrangian

Lint52g0c̄@s1 ig5p•t#c. ~B3!

The chiral symmetry breaking current quark mass term i

LxSB52m0c̄c52«3c̄c5m0
g0

G
s5«1s. ~B4!

Note that Eq.~B2a! implies ~using the linearS model rela-
tions!

2g0^s&05G^c̄c&052g0f p52m. ~B5!

This in turn leads to

«15«3

g0

G
52

m0

f p
^c̄c&05mp

2 f p , ~B6!

where the last step follows from the GMOR relation, whi
can be explicitly demonstrated in the NJL model at the qu
level.

Chiral symmetry breaking coefficients have been cal
lated at the mesonic level in a more sophisticated ch
quark~‘‘global color’’ ! model in Ref.@15#. The challenge is
to extend this analysis to the nucleon case. This can pres
ably be done by solving the three-quark Faddeev-Bet
Salpeter equation, see Ref.@23#, and calculate«3 at the
nucleon level.
5-10
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