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Abstract

Radiative corrections to the lifetime and angular correlation coefficients of neutron beta-decay are evaluated in effec
theory. We also evaluate the lowest order nucleon recoil corrections, including weak-magnetism. Our results agree w
of the long-range and model-independent part of previous calculations. In an effective theory the model-dependent radia
corrections are replaced by well-defined low-energy constants. The effective field theory allows a systematic evaluation
higher order corrections to our results to the extent that the relevant low-energy constants are known.
 2004 Elsevier B.V. All rights reserved.

PACS: 23.40.-s; 13.40.Ks; 12.39.Fe; 11.30.Rd

1. Introduction

The radiative corrections for beta-decay have been intensively investigated by a number of authors, and the
issue for such studies has been to deduce the value of the Cabbibo–Kobayashi–Maskawa (CKM) matrix
Vud from nuclear beta-decay data. An accurate value forVud is important for testing the unitarity of the CKM
matrix. The most precise values ofVud have been obtained from the accurate data of super-allowed 0+ → 0+
nuclear beta-decays[1]. Neutron beta-decay measurements provide an alternative method of determiningVud ,
a method which does not depend on theaccuracy of nuclear models. Neutron beta-decay experiments also provi
the most precise determination of the axial-vector coupling constant,gA, which plays an important role in hadron
weak-interaction reactions including many astrophysical processes. Theoretically, pion beta-decay can also be us
for determiningVud . Unfortunately, however, the currently available experimental data onpion beta-decay are no
accurate enough to allow us to take full advantage of this merit, see, e.g., Cirigliano et al.[2].
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doi:10.1016/j.physletb.2004.06.037

http://www.elsevier.com/locate/physletb


S. Ando et al. / Physics Letters B 595 (2004) 250–259 251

decay
pose

“inner”
(and
ng

n a
ry and

heory”
g of
etry is

ry
all
s
m
ing
ith
rs
has
tice the

riate
m
izing the

tions of

s.
ring,

on
neutron
the

“

derived
n
t

order
adiative
olved in

in a
To extract an accurate value ofVud from neutron decay data, the theoretical expression for the neutron
rate including radiative corrections must be known with sufficient accuracy. The usual convention is to decom
radiative corrections of orderα into two parts, the “outer” and the “inner” corrections[3–5]. The “outer” correction
is a universal function of the electron energy, independent of the details of the strong interactions. The
correction stems from short-range terms and hadronic structure effects. This hadronic structure dependence
additional nuclear structure dependence in the case of nuclear beta-decay)causes uncertainties in extracti
fundamental quantities likeVud from experimental data.1

In this communication we present the first calculation of radiative corrections to neutron beta-decay based o
low-energy effective field theory (EFT). EFT provides symmetry constraints required by the underlying theo
a systematic expansion scheme for the evaluation of the hadron current. As suggested by Weinberg[7], low-energy
hadronic physics can be described by an effective field theory of QCD known as “chiral perturbation t
(χPT). The effective chiral Lagrangian,Lχ , reflects the symmetries and the pattern of symmetry breakin
the underlying QCD. For massless quarks the QCD Lagrangian is chirally symmetric, but chiral symm
spontaneously broken generating the pions as massless Goldstone bosons. Since theu andd quark masses are ve
small compared with the QCD scaleΛQCD, and since the finite pion mass generated by the quark masses is sm
compared to a typical strong interaction scale, it is reasonable to treat the explicit chiral symmetry breaking term
as small perturbations.Lχ is expanded in powers ofQ/Λχ � 1 whereQ denotes the typical four-momentu
of the process in question or the pion mass,mπ , which represents the small explicit chiral symmetry break
scale. The chiral scale,Λχ � 4πfπ � 1 GeV (fπ = 92.4 MeV is the pion decay constant), is associated w
the “high-energy” processes that have been integrated out in arriving atLχ and with pion loops. The paramete
appearing inLχ , called thelow-energy constants (LECs), effectively subsume the high-energy physics that
been integrated out. In principle, these LECs could be determined from the underlying theory, but in prac
LECs are determined phenomenologically from experimental data. Once the LECs are determined from approp
empirical data, thenLχ represents a complete Lagrangian up to a specified chiral order. Furthermore, starting fro
Lχ , one can develop, for the amplitude of a given process, a well-defined perturbation scheme by organ
relevant Feynman diagrams according to powers inQ/Λχ . If all the Feynman diagrams up to a given power,ν, in
Q/Λχ are taken into account, then the results depend only on the LECs up to this order, with the contribu
higher order terms suppressed by an extra power ofQ/Λχ .

Over the past decadeχPT has been successfully applied to many processes; for reviews, see, e.g., Ref[8,9].
Chiral Lagrangians including the photon field have beendeveloped and applied to, e.g., pion–nucleon scatte
see Refs.[10,11]. Our present calculation of the radiative corrections to neutron beta-decay is an EFT based
the spirit of the chiral Lagrangian approach. Thus we write down an effective Lagrangian, appropriate to
beta-decay, obeying chiral symmetry and involving a minimum set of LECs and use the Lagrangian to estimate
relevant amplitudes to leading, next-to-leading, and next-to-next-to leading orders (LO, NLO, N2LO) in theQ/Λχ

expansion. In fact, since the typical energy transfer of the reaction is much smaller than the pion mass, theQ/Λχ

expansion” here has a special feature to be explained in the next section.
The results of our EFT calculation confirm the expression for the model-independent universal function

by Sirlin [3]. Furthermore, our calculation provides expressions for corrections of orderα to the angular correlatio
coefficients in neutron beta-decay. We will show that the short-distance phenomena including the model-dependen
hadronic radiative corrections can be condensed into two LECs, one relevant to the Fermi constantGF and the
other to the axial coupling constantgA. The values of these LECs need to be determined by experiments. In
to have crude order-of-magnitude estimates of our LECs, we also compare our results with the “inner” r
corrections obtained in the standard calculations. Furthermore, we shall argue that, provided the LECs inv

1 A new calculation of these radiative corrections, obtained with the standard model of electroweak interactions, has been reported
recent preprint[6]. The results however seem to differ markedly from the classic calculations of Sirlin et al.[3–5].
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our calculation are of a “natural” size,the neutron-decay rate and angular correlation coefficients calculated he
are expected to have a precision better than 10−3.

2. Effective theory for neutron beta-decay

Since neutron beta-decay is a low energy process, it is natural to use here heavy-baryon chiral perturbat
theory (HBχPT), see, e.g., Refs.[8,9]. In fact the appropriate amplitude, however without radiative correcti
can be obtained from HBχPT calculations of muon capture on a proton,µ + p → n + ν, which have been carrie
out including N2LO correction terms[12–15]. Neutron beta-decay, however, has a feature not shared by
capture, namely several different expansion scales. In particular, the maximum energy release,�M = mn − mp −
me = 0.782 MeV, is very small compared to the pion massmπ and the nucleon massmN = (mp + mn)/2.
Correspondingly, if we denote bȳQ the typical four-momentum transfer of the process,Q̄ ∼ �M is also very
small. We therefore introduce here a particular “Q/Λχ ” expansion in whichQ, unlike most HBχPT calculations
only representsQ̄. The chiral symmetry breaking scale,mπ/Λχ � 0.14, will be accounted for separately. T
nucleon recoil terms are governed by the scaleQ̄/mN � 0.8 × 10−3, and they are NLO corrections to the L
expression. The scalēQ/mN � Q̄/Λχ is numerically of the same magnitude asα/(2π) ∼ 10−3, governing the
radiative corrections, which are our primary interest (α is the fine structure constant). Therefore, for our pres
purposes, we consider theα/(2π) andQ̄/mN corrections to be of the same order.

The relevant effective Lagrangian,Lβ , for the neutron decay process reads

(1)Lβ = Leνγ +LNNγ +LeνNN ,

whereLeνγ is the lepton–photon Lagrangian,LNNγ describes the heavy nucleon interacting with a photon,
LeνNN gives the effectiveV − A interaction between the lepton and the heavy nucleon current. Since the
mass is much heavier than the typical momentum scale of the reaction,Q̄ � mπ , we suppress the pion fields of th
chiral Lagrangian,Lχ , and inLβ we have retained only the interactions between the heavy nucleon field, l
current, and photons. Later in the text, we will discuss the role of the pions in the present calculation. T
has, through LO and NLO,

(2)Leνγ = −1

4
FµνFµν − 1

2ξA

(∂ · A)2 +
(

1+ α

4π
e1

)
ψ̄e(iγ · D)ψe − meψ̄eψe + ψ̄νiγ · ∂ψν,

(3)LNNγ = N̄

[
1+ α

8π
e2(1+ τ3)

]
iv · DN,

LeνNN = − (
◦
GF Vud)√

2
ψ̄eγµ(1− γ5)ψν

(4)

×
{
N̄τ+

[(
1+ α

4π
eV

)
vµ − 2◦

gA

(
1+ α

4π
eA

)
Sµ

]
N

+ 1

2mN

N̄τ+[
i
(
vµvν − gµν

)
(
←
∂ − →

∂ )ν − 2i
◦
µV

[
Sµ,S · (←

∂ + →
∂ )

] − 2i
◦
gAvµS · (←

∂ − →
∂ )

]
N

}
,

whereFµν = ∂µAν − ∂νAµ andDµ is the covariant derivative of QED. TheξA is the gauge parameter and w
choose the Feynman gaugeξA = 1. Thevµ is the velocity vector of the heavy-baryon formalism, which we t
asvµ = (1, �0), andSµ is the nucleon spin operator 2Sµ = (0, �σ). The isovector magnetic moment in the NLO L
grangian is◦

µV → µV = 4.706. The quantitiese1, e2, eV andeA are defined as the LECs of the theory. The LECse1
ande2 are theα-order corrections related to the wave-function normalization factors of the electron and prot
spectively. The LECseV andeA are theα-order corrections to the Fermi and Gamow–Teller amplitudes, where w
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Fig. 1. Feynman diagrams for neutron beta-decay up to orderα. In diagram (a), the four-fermion vertex can represent either the leading
(LO) or next-to-leading order (NLO) vertex, the latter being a 1/mN correction to the former. The crosses on the electron and nucleon lin
diagrams (c) and (e) are vertices involving the LECs,e1 ande2, respectively. The vertex of diagram (g) is given by the LECseV andeA .

have factored out the common coefficient
◦
GF Vud/

√
2. Those LECs are used to absorb infinities coming from

virtual photon-loops and take into account short-range radiative effects. We remarkthat some of those LECs conta
contributions from, e.g.,gi ’s for the one nucleon sector without leptons[10] andXi ’s for the meson sector with lep
tons[16] in χPT.2 As is conventional, the parameters of the initial Lagrangian, e.g., the Fermi constant

◦
GF and the

axial coupling constant◦gA, are taken as the coupling constants in the absence of radiative corrections and in
ral limit, mπ = 0. Thus in particular, we assume that the Fermi constant,

◦
GF → GF = 1.166×10−5 GeV−2, as de-

termined from muon-decay. As we discuss inthe next paragraph, higher order hadronic corrections, i.e., pion-loops,
renormalize these “bare” couplings to their physical values in the absence of electromagnetic effects, e.g◦

gA →
gA. Furthermore, radiative effects give rise to additional corrections to the coupling constants,GF andgA which
depend on the process being considered. These radiative corrections will be displayed explicitly in the prese

We calculate the Feynman diagrams shown inFig. 1, where the vertices are determined by the Lagrangian
Lβ , given above. Several remarks are in order on the diagrams inFig. 1. Consider first diagram (a), which do
not involve radiative corrections. Diagram (a) is a tree-diagram for the LO and NLO amplitudes. As rega
LO contribution, one may wonder why we do not consider here the pion-pole diagram (not shown). Th
pole diagram, which is responsible for the induced pseudoscalar coupling, formally belongs to LO and
would be included in normal circumstances. However, the extremely small momentum transfer involved in
beta-decay(Q̄ � mπ) drastically suppresses the pion-pole diagram contribution. Due to the presence of th
propagator and a momentum of orderQ̄ at each vertex, the pion-pole diagram scales like(Q̄/mπ)2 � 3 × 10−5

relative to the dominant LO terms. The accuracy of our present treatment does not warrant the inclusion of

2 Unfortunately the connection between the LECseV and eA and thegi andXi of Refs. [10,16] is not straightforward. Thegi andXi

originate in Lagrangians which involve only subsets of the degrees of freedom considered here and thus generate radiative corrections to onl
particular vertices in the diagrams for neutron beta-decay. Their contribution can be absorbed ineV and eA, but eV , eA would also contain
contributions from the LECs of a yet-to-be-calculated Lagrangian involving the nucleon,lepton current, and photons simultaneously.



254 S. Ando et al. / Physics Letters B 595 (2004) 250–259

ding

recoil
s since

d.
LECs

h
lected,
e

e
g

ssed
an

s
ing the
), (f) in
tex
rms, the
e loop
should
is

e

n

produces
as given
tiny pion-pole contribution, and we will not consider it in the main body of our calculation. In the conclu
section, however, we will briefly discuss the LO pion-pole term and its radiative corrections. Diagram (a) inFig. 1
also includes the NLO vertex coming from the nucleon recoil terms∝ Q̄/mN featuring inEq. (4). Since we
are treating theQ̄/mN andα/(2π) corrections as contributions of the same order, we will discuss these
terms later in the text; however, in evaluating radiative corrections, we need not consider the recoil term
these corrections would be of higher order∼ α/(2π) × µV Q̄/(2mN) ∼ 10−6. At order N2LO there occur two
kinds of contributions. Higher order recoil corrections scale as(Q̄/mN)2 � 10−6 and therefore can be neglecte
The remaining N2LO terms (diagrams not shown) come from pion-loops and the corresponding hadronic
which would appear in HBχPT Lagrangian at this order, see, e.g., Refs.[8,9]. The pion-loop diagrams whic
generate terms proportional tōQ2, i.e., terms representing the hadronic vertex form factor effects, can be neg
since their contributions are suppressed by a factor of(Q̄/Λχ)2 � 10−6 relative to the dominant LO terms. Th
remaining contributions of the pion-loops, which contain terms proportional to(mπ/Λχ)2, renormalize the bar
quantities such as the “bare” axial-vector coupling constant◦

gA. These(mπ/Λχ)2 terms and the correspondin
hadronic LECs are absorbed into the renormalizedgA so that to N2LO order,gA = ◦

gA[1 + O((mπ/Λχ)2)], see,
e.g., Eq. (4.50) in Ref.[8] or Eq. (50) in Ref.[12]. Radiative corrections to the pion loop diagrams are suppre
by a scale(mπ/Λχ)2 � 2× 10−2 relative to the leadingradiative corrections, and therefore their contributions c
be ignored in the present calculation.

The above discussion indicates that, to the accuracy in question, we need only consider radiative correction
of the following type. Of the contributions topologically represented by diagram (a), consider those involv
LO vertex and evaluate all possible radiative corrections applied to these LO diagrams. Diagrams (b), (d
Fig. 1are one-photon loop corrections for the electron propagator, the nucleon propagator, and the four-point ver
function, respectively. Meanwhile, diagrams (c), (e) and (g) represent the contributions of the counter te
e1, e2, eV andeA terms, in the Lagrangian. These LECs remove the ultraviolet divergence arising from th
diagrams (b), (d) and (f). As is well known, the infrared divergences contained in diagrams (b), (d), (f)
be canceled by the infrared divergences in the bremsstrahlung diagrams (h) and (i),3 and we have confirmed th
cancellation explicitly.

3. The correlation coefficients and the decay rate from EFT

A general expression for the differential neutron decay ratedΓ is well known[18] for a case wherein only th
neutron is polarized, and in which the nucleon recoil and radiative corrections are ignored:

dΓ

dEe dΩp̂e
dΩp̂ν

� (GFVud)2

(2π)5

(
1+ 3g2

A

)| �pe|EeE
2
ν

(5)×
[
1+ a( �β · p̂ν) + b

(
me

Ee

)
+ n̂ ·

(
A �β + Bp̂ν + D

�pe × �pν

EeEν

)]
.

HereEe and �pe (Eν and �pν ) are the electron (neutrino) energy and momentum,n̂ is the neutron spin polarizatio
vector,�β = �pe/Ee, anda, b, A, B, D are the correlation coefficients. If we calculate diagram (a) inFig. 1in the LO
approximation, and if we neglect the nucleon recoil terms in the phase space factor, then our calculation re
Eq. (5), and furthermore we recover the standard lowest order expressions for the correlation coefficients
in [18]

(6)a = 1− g2
A

1+ 3g2
A

, A = −2g2
A + 2gA

1+ 3g2
A

, B = 2g2
A + 2gA

1+ 3g2
A

,

3 Recently these bremsstrahlung diagrams have been studied by Bernard et al. for radiative neutron beta-decay,n → p + ν + e + γ , in EFT
[17].
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wheregA is the physical axial coupling constant. The coefficientb in Eq. (5), which reflects the presence of sca
and tensor weak couplings, vanishes in our LO calculation, since our Lagrangian only contains the standa
and axial vector weak interaction. The parameterD in Eq. (5)is related to time-odd correlations and hence it a
should vanish in the LO calculation since our Lagrangian isT invariant. However, “induced”D terms can appear a
higher orders. For instance, interference between the weakmagnetism and the radiative corrections would gene
a D term of order 10−5 [19].

As we proceed to include the higher order radiative diagrams generated by the Lagrangian ofEq. (1), we
encounter infinities coming from the photon-loop diagrams inFig. 1. In order to eliminate these infinities, we ne
to introduce counter terms with the corresponding LECs in our Lagrangian. We renormalize these LECs in
usual effective field theoretical method based on the dimensional regularization of loop integrals[8,9]. The finite
LECs renormalized at the scaleµ are given by4

(7)eR
V,A(µ) = eV,A − 1

2
(e1 + e2) + 3

2

[
1

ε
− γE + ln(4π) + 1

]
+ 3 ln

(
µ

mN

)
.

This renormalization is adequate to remove all the infinities associated with virtual photons which we encounte
in this calculation. The differential neutron decay rate includingthe radiative corrections and 1/mN corrections is
found to be

(8)
dΓ

dEe dΩp̂e
dΩp̂ν

= (GFVud)2

(2π)5

F(Z,Ee)| �pe|Eν

mn[Ep + Eν + Ee( �β · p̂ν)]
|M|2,

where we have retained the relativistic expression for the phase factor, and

|M|2 = mnmpEeEν

(
1+ α

2π
eR
V

)(
1+ α

2π
δ(1)
α

)
C0(Ee)

(
1+ 3g̃2

A

)

(9)

×
{

1+
(

1+ α

2π
δ(2)
α

)
C1(Ee) �β · p̂ν

+
(

1+ α

2π
δ(2)
α

)[
C2(Ee) + C3(Ee) �β · p̂ν

]
n̂ · �β + [

C4(Ee) + C5(Ee) �β · p̂ν

]
n̂ · p̂ν

}
.

The explanation of the quantities appearing in this expression will be given below. We remark that, in o
arrive at this factored form, we have freely exploited the fact that terms of order(α/2π)2, (α/2π)(Q/mN) and
(Q/mN)2 can be ignored to the order of accuracy of our concern.

In Eq. (8)the Coulomb part of the radiative correction has been extracted as an overall factor and incorpora
into the usual Fermi functionF(Z,Ee) � 1 + (α/2π)δ

(Coul)
α = 1 + απ/β , for Z = 1. In Eq. (9) the finite LEC,

eR
V , featuring in the factor(1+ α

2π
eR
V ) subsumes those short-range radiative corrections to the Fermi constaG2

F

which have been integrated out in arriving at our effective Lagrangian. This point will be further discussed
final section. The axial coupling constant,gA, which has been renormalized by pion loops, is multiplied by sh
range radiative corrections involving the finite LECeR

A as well aseR
V . For convenience, and to simplify the resu

we incorporate this radiative correction togA into g̃A defined by

(10)g̃A = gA

[
1+ α

4π

(
eR
A − eR

V

)]
,

and thisg̃A has been used inEq. (9). Recall thatgA corresponds to the physical value, with all short-range radia
corrections removed.

In Eq. (9), δ
(1)
α represents the model-independent radiative correction toGF , which depends only on th

kinematics of the electron, whileδ(2)
α gives the model-independent radiative corrections to the coefficients o

4 The convention for the dimensional parameterε used here is:d = 4− 2ε.
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y

s that
ds
angular correlation terms,�β · p̂ν andn̂ · �β. The explicit expressions forδ(1)
α andδ

(2)
α are:

δ(1)
α = 3 ln

(
mN

me

)
+ 1

2
+ 1+ β2

β
ln

(
1+ β

1− β

)
− 1

β
ln2

(
1+ β

1− β

)
+ 4

β
L

(
2β

1+ β

)

+ 4

[
1

2β
ln

(
1+ β

1− β

)
− 1

][
ln

(
2(Emax

e − Ee)

me

)
+ 1

3

(
Emax

e − Ee

Ee

)
− 3

2

]

(11)+
(

Emax
e − Ee

Ee

)2 1

12β
ln

(
1+ β

1− β

)
,

δ(2)
α = 1− β2

β
ln

(
1+ β

1− β

)
+

(
Emax

e − Ee

Ee

)
4(1− β2)

3β2

[
1

2β
ln

(
1+ β

1− β

)
− 1

]

(12)

+
(

Emax
e − Ee

Ee

)2 1

6β2

[
1− β2

2β
ln

(
1+ β

1− β

)
− 1

]
.

HereEmax
e = (m2

n − m2
p + m2

e)/2mn is the maximum electron energy, andL(z) is the Spence function defined b

(13)L(z) =
z∫

0

dt

t
ln(1− t).

The factorC0(Ee) contains the recoil corrections to the overall rate. It is given by

(14)C0(Ee) = 1+ 1

mN(1+ 3g̃2
A)

{(
g̃2

A − 2µV g̃A + 1
)
Emax

e − m2
e

Ee

(
1+ g̃2

A

) + 2µV g̃A

(
β2 + 1

)
Ee

}
,

where we have usedEν = Emax
e − Ee +O(1/mN). The other coefficientsCi(Ee) (i = 1,2, . . . ,5) are given by

(15)C1(Ee) = ã

{
1+ 1

mN

[
(g̃2

A + 2µV g̃A + 1)

1+ 3g̃2
A

m2
e

Ee

+ (g̃2
A + 1)[8µV g̃AEe − 4Emax

e g̃A(g̃A + µV )]
(g̃2

A − 1)(1+ 3g̃2
A)

]}
,

(16)C2(Ee) = Ã

{
1+ 1

mN

[
(g̃2

A − 1)(g̃A + µV )

2g̃A(1+ 3g̃2
A)

(
Emax

e − Ee

) + Ee(µV − 1)

g̃A − 1
− β2Ee

g̃2
A + 2g̃AµV + 1

1+ 3g̃2
A

]}
,

(17)C3(Ee) = Ã
Ee(g̃A − µV )

2mNg̃A

,

(18)C4(Ee) = B̃

{
1+ 1

mN

[
Eeβ

2(g̃2
A − 1)(g̃A − µV )

2g̃A(1+ 3g̃2
A)

+ (g̃A + µV )(g̃A − 1)2

(g̃A + 1)(1+ 3g̃2
A)

(
Ee − Emax

e

)]}
,

(19)C5(Ee) = B̃
(g̃A + µV )

2mNg̃A

(
Emax

e − Ee

)
,

whereã, Ã, B̃ are given byEq. (6)with the substitutiongA → g̃A. It is to be noted thatEq. (9)exhibits angular
dependences that are missing inEq. (5). These extra angular dependences arise from the NLO contribution
have been included in the 1/mN corrections (which leads toEq. (9)) but ignored in the LO evaluation (which lea
to Eq. (5)). It has been a common practice to approximate the overall kinematic factor inEq. (8)by applying an
expansion in 1/mN . If convenient, one could use the following approximation:

(20)
mpE2

ν

E + E + E �β · p̂ � (
Emax

e − Ee

)2
[
1+ 1

mN

(
3Ee − Emax

e − 3Ee �β · p̂ν

)]
,

p ν e ν
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where we have used

(21)Eν � (
Emax

e − Ee

)[
1+ Ee

mN

(1− �β · p̂ν)

]
.

The angular dependence appearing inEq. (20)needs to be considered simultaneously with the angular depend
contained inEq. (9).

The model-independent radiative correctionδ
(1)
α in Eq. (11)agrees with that obtained by Sirlin[3], while δ

(2)
α

in Eq. (12)also agrees with the result reported by Garcia and Maya[20]. We note that recoil corrections have al
been calculated in the literature using the conventional methods. For instance, Wilkinson[21] evaluated correction
to the decay rate and the correlation coefficientA, and Bilen’kii et al.[22] computed corrections to the decay ra
and the correlation coefficienta. Furthermore, Holstein[23] considered recoil corrections to all the observab
for general nuclear beta-decays. Our results for the recoil corrections agree with those found in these pre
studies.

4. Discussion and conclusions

As mentioned in the introduction, a prime issue in the studiesof neutron beta-decay is to deduce the prec
value ofVud from the experimental data. Another issue is the extraction of the value ofgA from the data. We sha
discuss here the significance of our present calculation in connection with these two issues.

To obtain the actual numerical values ofVud and gA we need to know the values of the LECs,eR
V and

eR
A , pertaining to the lepton-current nucleon-current vertex. These LECs parameterize short-distance ph

explicitly included in the effective Lagrangian,Lβ , and they need to be determined empirically using approp
observables. This is an important line of studies for the future. Here, instead, we discuss simple o
magnitude estimates of the LECeR

V , which is the most important LEC in neutron beta-decay. Based on the gene
estimation of a photon-loop diagram, one may expect the natural scale for this parameter to be of the
(α/2π)eR

V ∼ 2× 10−2, with eR
V ∼ ln(me/Λχ). To obtain another rough estimate ofeR

V we may compare our resu
for the neutron decay rate obtained fromEq. (8)with Eq. (6)of Marciano and Sirlin[5]. Thus we introduce the
premise

(22)eR
V � −5

4
− 4 ln

(
mW

mZ

)
+ 3 ln

(
mW

mN

)
+ ln

(
mW

mA

)
+ 2C + Ag,

wheremW , mZ are the masses of theW , Z bosons andmA is the axial mass scale. As is customary, we define
Fermi constantGF of muon decay by absorbing the factor 1+(3α/4π) ln(mW/mZ) intoGF [24]. The contribution
ln(mW/mZ) in Eq. (22)is actually the difference between the contribution of theZ-box diagrams5 in neutron beta-
decay and the contribution of theZ-box diagrams in muon decay. InEq. (22), the major contributions to the righ
hand side originate from the short-range virtual photon corrections to the Fermi transition from the weak vector an
axial-vector vertices. The former gives the contribution, 3 ln(mW/mN), and the latter ln(mW/mA). TheC in the
expression is the long-range model-dependent correction coming from the axial-current and anomalous magn
moments of the nucleon, and is proportional to(µSgA) whereµS is the isoscalar magnetic moment of the nucle
A value of 2C = 1.77 was found in Ref.[5]. In an HBχPT calculation, however, we have verified that a correc
estimated from the diagrams ofC is of higher order∝ α/(2π)(Q̄/mN)2 and can be neglected (seeSection 2).
Finally, theAg term, which includes a short-range strong-interaction correction, is very small:Ag � −0.34 [5].
In this connection, it might be of interest to decompose, following Cirigliano et al.[2], our eR

V into two parts:
eR
V = eSD

V + ẽR
V . TheeSD

V term describes the universal short-distance physics of electroweak theory discus

5 TheZ-box diagrams here refer to diagrams like the one inFig. 1(f), with the photon replaced by theZ boson; see Fig. 3 in Ref.[24].
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Sirlin [24], while theẽR
V term describes short-distance hadronic physics. It is possible that theAg term is associate

with the ẽR
V term. The above considerations lead to a rough estimate,eR

V � 20, i.e.,[α/(2π)]eR
V ∼ 4× 10−2, which

is of a natural size as discussed above. The above comparison also leads us to expect thatthe dominant contribution
to eR

V comes from the short-rangeelectroweak corrections.
The LECeR

A enters only as a radiative correction togA in Eq. (10), and therefore it may seem that there is
significant motivation to remove the radiative correctionα4π

(eR
A − eR

V ) from g̃A defined inEq. (10)and deduce
the values ofgA. Indeed, if we limit ourselves to neutron beta-decay, all the observables can be expressed u
g̃A without referring togA. However, since radiative corrections are specific to individual processes, there
be cases wherein the removal ofα

4π
(eR

A − eR
V ) from g̃A has physical consequences and henceeR

A does play a
significant role. A possible example is the Goldberger–Treiman relation,gAmN = fπgπN , wheregπN is the pion–
nucleon coupling constant. To elaborate on this point, it is useful to illustrate processes which necess
introduction of the LEC,eR

A . To this end, we consider diagrams containing the exchange of a pion (pion-pole
a virtual photon. These diagrams involve three distinct one-particle-irreducible vertex functions. The first
a nucleon–nucleon–lepton–lepton four-point vertex in which a virtual photon couples to both the nucleon
leptonic currents. This class of diagrams requires a counter term involvingeA associated withgA. The second type
is a lepton–lepton–pion three-point vertex wherein a virtual photon only couples to the pion, the pion–lepto
or the lepton, and this vertex is related to the pion decay constantfπ . Some of the LECs arising from this typ
of diagrams can be found in the chiral Lagrangian considered by Knecht et al.[16]. These LECs are also relate
to the “inner” radiative corrections calculated for pion beta-decay, see, e.g.,[25]. The third type is a nucleon
nucleon–pion vertex in which a virtual photon only couples to the pion, the pion–nucleon vertex or the n
and this vertex is related togπN . The corresponding LECs are thegi ’s appearing in Müller and Meißner’s wor
[10]. To our knowledge, however, no systematic HBχPT study of the Goldberger–Treiman relation including
radiative corrections associated with each of the vertices has been done so far. In fact the radiative correctioeR

A

really has not been fully studied yet in the standard approach. Instead it has usually been assumed thateR
A � eR

V ,
which makes the radiative correction togA small. Such radiative corrections could contribute to the evaluatio
the Goldberger–Treiman discrepancy, but there is clearly not yet enough information to determine whet
turn out to be significant in comparison with the chiral symmetry breaking term.

As discussed inSection 2, we have not included in our work radiative corrections involving the NLO verte
pion loop diagrams. The former should be suppressed at least by a factor ofµV Q̄/(2mN) � 2×10−3, and the latter
by a factor of(mπ/Λχ)2 � 2× 10−2 relative to the leading radiative corrections. Also omitted from our work
the isospin breaking effects, which are naturally incorporated in the N2LO heavy-baryon chiral Lagrangian[8] not
explicitly written in this Letter. Recently, Kaiser[26] studied isospin violation corrections toGF Vud using HBχPT
and found that the isospin breaking corrections are of the order of 10−5. To the accuracy of our present conce
we can safely neglect the isospin violation corrections.

We now summarize. Using the effective field theory for neutron beta-decay, we have calculated the decay ra
the neutron and the angular correlation coefficients including recoil corrections and radiative corrections ofα.
We have included all non-radiative terms through N2LO except those which are negligible because of the extreme
small value ofQ̄ for neutron beta-decay. Our results reproduce the model-independent radiative corrections and
recoil corrections in the literature. The short-range radiative corrections of the earlier calculations are replace
our theory by the two finite radiative LECs,eR

V andeR
A whereeR

V affectsGF and the difference,eR
V − eR

A , affects
gA. Via comparison with the results of the existing model calculations, we have argued that the value oeR

V is
of a natural scale. An advantage of our EFT approach is the possibility of evaluating higher order correc
a systematic way, and the possibility to parameterize the strong interaction dependent contributions in
well-defined LECs, which can in principle be obtained from independent experiments. The next order cor
in the EFT for neutron beta-decay are estimated to be of the order 10−5 or smaller. Therefore, to the extent that t
LECs involved in the present calculation are of a “natural” size (as discussed above), we expect our exp
for the rate and the angular correlation coefficients to be accurate to better than 10−3.
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