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Abstract

Assuming that at sufficiently high densities the constituent quarks become relevant degrees of freedom,
we study within the framework of a chiral quark model the influence of s-wave K− condensation on the
quark–antiquark condensates. We find that, in linear density approximation, the presence of a K− con-
densate quenches the ūu condensate, but that the d̄d condensate remains unaffected up to the chiral order
under consideration. We discuss the implication of the suppressed ūu condensate for flavor-dependent chiral
symmetry restoration in dense matter.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

One of the challenging current problems in nuclear physics is to elucidate the behavior of
nuclear matter under extremely high-density and/or high-temperature environments. It is theo-
retically expected that, at very high baryon densities (even at low temperatures), chiral symmetry
is likely to be restored, and that baryon matter can be converted into quark matter; for a review,
see e.g. Ref. [1]. Reasonable estimates also suggest the possible formation of a kaon condensate
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at high densities [2–8]. The existence of quark matter and/or a kaon condensate can have impor-
tant consequences for the structure of compact stars and for the cooling behavior of a remnant
star after supernova explosion and the subsequent formation of a neutron star.

Kaon condensation has been studied extensively since Kaplan and Nelson’s seminal work [2]
appeared in the mid 1980s. In a tree-order calculation in chiral perturbation theory (ChPT) based
on an SU(3)L × SU(3)R chiral Lagrangian, Kaplan and Nelson showed that s-wave kaon con-
densation could occur at a density around 3ρ0, where ρ0 is the normal nuclear density. It was
subsequently pointed out that electrons with high chemical potential would help speed the con-
densation process [3]. An improved ChPT treatment of kaon condensation that goes beyond
tree-order calculations and that is consistent with the empirical kaon–nucleon interactions was
subsequently proposed [3–5], and the results indicated that the critical density ρK

c could lie in
the range 2ρ0 < ρK

c < 4ρ0; for a review, see e.g. Ref. [6]. A two-loop calculation of the s-wave
pion and kaon self-energies in nuclear matter was carried out in Refs. [9–11]. These investiga-
tions suggested that the effective pion mass in matter is likely to be relatively stable as a function
of the density. The behavior of the in-medium K− effective mass, m�

K , just below the K−p

threshold is less clear since it is strongly affected by the non-perturbative in-medium dynamics
of the sub-threshold Λ(1405)-resonance [5,12,13] and by the K̄N coupling to the πΣ channel,
see e.g. Refs. [12,13]. This topic was discussed in detail in Ref. [14], where Pauli blocking and
nucleon–nucleon short-range correlations were also taken into account in estimating m�

K . The
effects of kaon–nucleon and nucleon–nucleon correlations on m�

K and kaon condensation in nu-
clear medium were studied in Ref. [15], according to which these correlations move the critical
nuclear density for kaon condensation above 6ρ0. The competition of pion and kaon condensa-
tion and the phase diagram of a three-flavor Nambu–Jona–Lasinio model at finite temperature T

and finite quark chemical potentials were investigated in Ref. [16]. At sufficiently high densities,
strange-quark degrees of freedom may become relevant [17], and the presence of strange matter
can push the onset of kaon condensation to higher densities and, for some choices of the input
parameters that are hard to pin down, even out of the physically relevant density regime [17].

Meanwhile there have recently been interesting developments concerning deeply bound
kaonic nuclear states and kaonic atoms [18]. These probes however pertain to the (near-)zero-
density environment, and one should keep in mind that mechanisms extrapolated or inferred
from the zero-density regime may not be operative at high densities, in particular, in the prox-
imity of chiral phase transition where kaon condensation supposedly takes place. For instance,
according to a renormalization group flow formalism, which is an appropriate framework to use
when phase transitions are involved, certain terms in the Lagrangian that describe multi-body
correlations may become “irrelevant" operators, playing a negligible role near the transition re-
gion [19]. This can be the case with the four-baryon interaction terms that play a significant role
in the energy-density region where the above-mentioned Λ(1405)-resonance is prominent. In
other words, it is possible that these four-baryon terms are only important at very low densities
far from the high densities required for a phase transition to occur (be that the critical density for
kaon condensation or chiral restoration). We also note that lattice studies of matter in heat bath
indicate that the relevant fermionic degrees of freedom near the chiral transition temperature are
the constituent quarks rather than the baryons. Furthermore, recent developments in holographic
dual QCD [20,21] at finite temperature indicate that, whereas chiral symmetry is definitely bro-
ken when confinement exists, the converse is not necessarily true, and that the chiral symmetry
restoration scale can be much higher than the deconfinement scale. It has been shown [21] that,
in a regime where chiral symmetry is broken but confinement still persists, the relevant mass
scale is the constituent quark mass, not the current quark mass. Although it is perhaps unsafe
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to naively apply the same reasoning to the case at hand (that is, to a high-density case), a study
based on skyrmion matter [22] indicates that, at high densities, basic changes in the matter struc-
ture can lead to in-medium interactions that are significantly different from those in free space.
An interesting possibility is to adopt the holographic QCD models with baryons [23] to delve
into kaon condensate, which, however, will not be pursued in the present work.

It is to be noted that the chiral quark model (χQM) enables us to take into account—at least
partially—the features discussed above, and we consider it illuminating to study (possible) kaon
condensation in dense matter in the framework of χQM. The relevance of χQM in the neigh-
borhood of chiral phase transition was discussed in detail in Refs. [24–27]. In analogy to the
temperature-induced chiral restoration where χQM is invoked [28], the relevant degrees of free-
dom above a certain value of density, say, ρ̄ > ρ0

1 can be taken to be the constituent quarks
whose masses are generated via the “dressing” with the “soft” component of the gluon field,
with the “hard” component hardly participating in the process. Thus one can think of the con-
stituent quarks as quasi-particles resulting from highly non-pertubative vacuum re-structuring
caused by the medium (high temperature and/or density) and hence encapsulating certain as-
pects of many-body correlations. As a result of this “dressing”, the constituent quarks, we may
call them quasi-quarks, can be expected to interact weakly among themselves and with the (hard
component of the) gluon field. This means that χQM has the advantage of providing a systematic
chiral power counting for the interactions of the constituent quarks with the Goldstone bosons
and, in addition, allowing a weak-coupling expansion for interactions with the gluons [29]. This
aspect gives a justification for us to ignore gluonic contributions in calculating the effective po-
tential (see below). This approach to kaon condensation anchored on a chiral quark Lagrangian
valid above the density ρ̄ is consistent with—and complements—the top–down approach [31]
based on expansion around the vector manifestation fixed point (which coincides with the chiral
restoration point) of the Harada–Yamawaki hidden local symmetry theory [32].

In the present work we study K− condensation in the framework of χQM [29], and under-
take the first investigation of how and to what extent a possible kaon condensate distorts the
Fermi seas of the quasi-quarks and what influences this distortion can have on chiral symme-
try restoration in dense matter. The issues investigated here are important in connection with
phase transitions leading to color superconductivity; the behavior of the transition in the chiral
quark picture could be quite different from that of the standard scenario, where the transition
is presumed to occur from a Fermi liquid state. In the present exploratory study, we describe
quark matter as a free Fermi gas of quasi-quarks. This treatment does not explicitly take into
account the strong correlations believed to be present at ordinary (low) nuclear matter density, at
which three quarks are clustered into color-singlet nucleons that are spatially separated by strong
short-range (nucleon–nucleon) repulsion. However, there exists the expectation that, unlike the
baryons, the constituent quarks are not susceptible to strong short-range correlations [28], and
hence the neglect of correlation effects is likely to be a less serious problem in the χQM ap-
proach than in the baryonic picture. Although this problem warrants further examinations, we
limit ourselves here to the Fermi gas model and investigate (within the confine of this model)
the consequences of the χQM Lagrangian—assumed to be valid above a few times the nuclear
matter density—on kaon condensation and also the effects of kaon condensation (if it occurs) for
the quark–antiquark condensate.

1 Studies based on the effective field theory treatment of nuclear matter indicate that ρ̄ can be somewhat greater than
normal matter density ρ0 [27,30]. The precise value of ρ̄ which cannot be pinned down at present is not likely to be
important for our purposes.
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The paper is organized as follows. In Section 2 we first give a brief recapitulation of χQM, and
then we demonstrate that, within the framework of linear density approximation, the use of χQM
for describing K− condensation essentially reproduces the results obtained both in heavy-baryon
chiral perturbation theory (HBChPT) [6] and in a formalism that describes fluctuations around
the vector manifestation fixed point of hidden local symmetry theory [31]. In Section 3 we ex-
amine the effects of K− condensation on the quark–antiquark condensate 〈q̄q〉 in the framework
of χQM and in HBChPT. Section 4 is dedicated to summary. In Appendix A, we present a brief
discussion on the power counting rules in χQM.

2. Kaon condensation in the chiral quark model

The chiral quark model (χQM) we employ here is defined by the Lagrangian [29]

L= L0 +LM +Lmφ , (1)

where the chiral-symmetry invariant part L0 is given by

L0 = ψ̄(i/D + /V )ψ + gAψ̄/Aγ5ψ − M0ψ̄ψ

+ 1

4
f 2

π Tr
(
∂μΣ†∂μΣ

) − 1

2
Tr

(
GμνGμν

) + · · · (2)

where Gμν is the QCD field tensor. The covariant derivative is defined by

Dμ = ∂μ + igGμ; Gμ = Ga
μT a; (3)

where Ga
μ is the gluon field with a = 1, . . . ,8 and

Vμ = i

2

(
ξ†∂μξ + ξ∂μξ†); Aμ = i

2

(
ξ†∂μξ − ξ∂μξ†);

ψ =
⎛
⎝ u

d

s

⎞
⎠ ; ξ = e(iΠ/fπ ); Σ = ξξ

with

Π = 1√
2

⎛
⎜⎜⎜⎝

√
1
2π0 +

√
1
6η π+ K+

π− −
√

1
2π0 +

√
1
6η K0

K− K̄0 − 2√
6
η

⎞
⎟⎟⎟⎠ . (4)

Here fπ � 93 MeV, and M0 ≈ 350 MeV denotes the part of the constituent quark mass generated
by spontaneous chiral symmetry breaking which constitutes the bulk of the effective quark mass.
The chiral symmetry-breaking term LM is given by

LM = −1

2
c1ψ̄

(
ξ†Mξ† + ξMξ

)
ψ (5)

where

M =
⎛
⎝ mu 0 0

0 md 0
0 0 m

⎞
⎠ ,
s
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Fig. 1. The kaon self-energy contribution in quark matter at lowest chiral order. The dashed line stands for the kaon, and
the solid line for the quark. The quark propagator line marked with “|” denotes the density-dependent part of the quark
propagator (at zero temperature), −2πδ(k2 − M2

f
)θ(k0)NF (k0)|T →0, where NF (k0) is the Fermi–Dirac distribution

function and Mf is the mass of the constituent quark of flavor f .

and c1 ≈ 1 [29], which is fixed from the mass difference (∼150 MeV) between the s quark and
the u (or d) quark. We will assume c1 = 1 in this work. Lmφ in Eq. (1), which is responsible for
the finite Goldstone boson masses, takes the form

Lmφ = 1

2
f 2

π Tr
(
μMΣ†) + h.c., (6)

where μ is a parameter with the dimension of mass.
χQM offers a systematic chiral power counting expansion in describing the interactions of

constituent quarks with Goldstone bosons (summarized in Appendix A). To estimate higher-
loop corrections, we need to set up in-medium power counting rules in χQM.2 To introduce
in-medium counting rules applicable to dense matter, we assume that p ∼ kF , where p is a typ-
ical momentum scale and kF is the quark Fermi momentum. Since the u- and d quark Fermi
momentum at 4ρ0 (symmetric matter) is about 430 MeV, the expansion parameter related to the
Fermi momentum is kF /Λ ∼ 0.43 (Λ = 1 GeV). With the assumption p ∼ kF , it is easy to es-
tablish that the in-medium counting rules agree with the free-space counting rules; see Eq. (A.4)
in Appendix A. It is to be noted that in ChPT involving the nucleons, in-medium chiral counting
contains a subtle issue related to the “heavy” nucleon mass [33]. No such issue arises in χQM,
since the constituent quark masses are of the same order as the typical momentum scale p. In ad-
dition, χQM allows for a perturbative expansion of the constituent-quark gluon interaction (with
αs ≈ 0.28) [29]. This scheme contains no free parameters to the chiral order we will consider in
this work and to lowest order in αs . Those terms in the Lagrangian (1) which are relevant for our
discussion of kaon condensation in quark matter can be written as

LK = i

4f 2
π

[
ū
(
K+ 
 ∂K− − (
 ∂K+)K−)

u + s̄
(
K− 
 ∂K+ − (
 ∂K−)K+)

s
]

+ 1

2f 2
π

(mu + ms)[ūK+K−u + s̄K−K+s]. (7)

In order to establish a basis for our work, we first describe kaon condensation in the framework
of χQM with the purpose of comparing our results with those obtained in HBChPT [6]. We
calculate the K− self-energy using the Lagrangian LK in Eq. (7). The lowest-order contributions
come from the graphs shown in Figs. 1 and 2. As we will show below, however, the contribution

2 In-medium chiral counting rules in the hadronic picture have been discussed at length in Ref. [33].



254 Y. Kim et al. / Nuclear Physics A 792 (2007) 249–263
Fig. 2. Kaon self-energy. The dashed lines stand for kaons and the solid lines for quarks. The symbol “|”
denotes the density-dependent part of the quark propagator.

from Fig. 2 is negligible compared to the one from Fig. 1. Higher chiral-order contributions will
not be discussed in this work.

We consider kaons in medium that solely consists of up and down quarks with no strange-
quarks in the Fermi sea. Our quark matter is assumed to be symmetric with respect to the u- and
d-quarks, so the quark densities in the present case are characterized by ρu = ρd ≡ ρq and ρs = 0,
while the baryon density ρB is given by ρB = 2

3ρq . To establish connection with the previous
works, we will demonstrate that, within the framework of the linear density approximation, the
χQM approach to kaon condensation leads to results similar to those obtained in HBChPT [3–6]
and those obtained in an expansion around the vector manifestation fixed point [31]. To compare
with the HBChPT calculations, we need to use non-relativistic approximation in evaluating the
kaon self-energy in Fig. 1. Since the constituent quark mass, M0 ≈ 350 MeV, is smaller than the
chiral scale, Λ � 1 GeV, and is of the order of kF , this non-relativistic approximation might not
be very reliable. It is used here only for the sake of comparison with previous works. Using the
Lagrangian in Eq. (7), we find

−iΣK(q0) = i

[
3

4

(mu + ms)

f 2
π

+ 3

4

q0

f 2
π

]
ρB. (8)

The in-medium kaon mass m�
K is then obtained by solving the dispersion equation

m�2
K = m2

K + ΣK

(
q0 = m�

K

)
, (9)

where mK ≈ 500 MeV is the free kaon mass. We define x = m�
K/mK and c = ρB/ρ0, where

ρ0 = 0.17 fm−3 is the normal nuclear matter density, to rewrite the dispersion equation as

x2 + 0.24cx + 0.12c − 1 = 0, (10)

where we have used for the current quark masses mu ≈ 6 MeV, ms ≈ 240 MeV as in [6]. Solving
this equation for typical values of c, we arrive at

c = 1: m�
K− ≈ 410 MeV,

c = 2: m�
K− ≈ 330 MeV,

c = 3: m�
K− ≈ 260 MeV,

c = 4: m�
K− ≈ 193 MeV. (11)

We note that the HBChPT calculation in Ref. [6] finds m�
K− ≈ 360 MeV for c = 1. Since the

electron chemical potential μe is known to have values 200 MeV < μe < 300 MeV in the
density range ρB = (2 − 4)ρ0 [4], one may infer that kaon condensation takes place around
ρB ∼ (3–4)ρ0. In the above we ignored the contribution from the diagram in Fig. 2 and further-
more, to facilitate comparison with HBChPT, we used the heavy-fermion approximation for the
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quark propagator. We now examine whether the contribution of Fig. 2 to s-wave kaon conden-
sation is indeed negligible. We also study the consequences of the relativistic treatment of the
quark propagator. To this end, we calculate relativistically the contributions of the diagrams in
Figs. 1 and 2. For SU(2) symmetric matter, the kaon self-energy, −iΣex

K (q0), corresponding to
Fig. 2 is given by

Σex
K (q0) = g2

A

2π2f 2
π

q2
0

kF∫
0

dk̄

(
k̄2

k0

)(
2k2

0 − M2
u + q0k0 − MuMs

q2
0 + 2q0k0 + �M2

)
, (12)

where k̄ = |�k|, k0 =
√

k̄2 + M2
u and �M2 = M2

u − M2
s , with Mu and Ms being the masses of

the constituent u- and s-quarks, respectively. We again solve the dispersion equation, m�2
K =

m2
K + ΣK(q0 = m�

K), with the kaon self-energy ΣK which includes the contributions of the
diagrams in Fig. 1 and 2. The results are given in Eq. (13). For each row, the number that appears
to the left (right) of the arrow is the result that excludes (includes) the contribution of Fig. 2.

c = 1: m�
K− ≈ 415 MeV → 424 MeV,

c = 2: m�
K− ≈ 341 MeV → 361 MeV,

c = 3: m�
K− ≈ 278 MeV → 313 MeV,

c = 4: m�
K− ≈ 225 MeV → 283 MeV. (13)

Comparison of the results in Eq. (11) with those in Eq. (13) reveals that the relativistic correc-
tions are small, ranging from about 1% to ∼17%. Treating the diagram in Fig. 1 relativistically
increases the value of m�

K− compared to the value of the non-relativistic treatment, especially for
the higher densities ρB ∼ (3–4)ρ0. As mentioned, the change in the value m�

K− that occurs as
we add the contribution of Fig. 2 to that of Fig. 1 is indicated by the arrow in Eq. (13). It is seen
that the effect of the diagram in Fig. 2 is a little bit bigger than the relativistic corrections, and it
could push up the critical density for K− condensation slightly.

3. Kaon condensation and quark–antiquark condensate

As discussed above, it is possible that a K− condensate exists at high matter densities. To
confirm the existence of K− condensation in the framework of χQM, we need to consider the
higher order corrections in a systematic way. In this section, however, we assume that K− con-
densation is realized in dense nuclear matter. Now, if a kaon condensate is formed, the values
of various quantities that characterize the physical condition of dense matter can also change. In
this subsection we study the influence of K− condensation (if it occurs) on the quark–antiquark
condensate 〈q̄q〉ρB

in dense matter. The purpose is to examine the effects of a postulated kaon
condensate on the possible restoration of chiral symmetry in dense matter. We will continue
to consider symmetric matter with no strangeness specified by ρu = ρd ≡ ρQ = (3/2)ρB and
ρs = 0.

3.1. Quark–antiquark condensate in the chiral quark model

We begin with a brief summary of the quark–antiquark condensate at low density. From the
energy density of quark matter calculated in the standard manner, we can obtain the in-medium
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quark condensate with the help of the Hellmann–Feynman theorem and the Gell-Mann–Oakes–
Renner (GMOR) relation, 2mq〈q̄q〉vac = −m2

πf 2
π , where 〈O〉vac represents the vacuum expec-

tation value of the operator O. The resulting expression for the quark condensate in medium
is

〈q̄q〉ρB
= 〈q̄q〉vac + 1

2

dε̃

dmq

(14)

where ε̃ is the energy density, and mq is the current quark mass, mq ≡ (mu + md)/2. We have
assumed here that SU(2) isospin symmetry is conserved and defined q̄q ≡ (ūu + d̄d)/2. At low
density, Eq. (14) leads to the model independent result

〈q̄q〉ρB

〈q̄〉vac
� 1 − σN

m2
πf 2

π

ρB, (15)

where σN is the nucleon sigma-term, see, e.g., Ref. [34] for details. The evaluation of corrections
to Eq. (15) requires model calculations.3

We now consider the effects a kaon condensate can have on the quark–antiquark condensate
in matter. We will find that the existence of a K− condensate leads to asymmetry between 〈ūu〉ρB

and 〈d̄d〉ρB
. In the following therefore we treat 〈ūu〉ρB

and 〈d̄d〉ρB
as independent quantities. In

χQM characterized by the Lagrangian (2), we are inspired by [34] to write:

〈q̄f qf 〉ρB
= 〈q̄f qf 〉vac + 1

2

[
∂ε̃

∂mf

+ dMf

dmf

∂ε̃

∂Mf

+ dm2
φ

dmf

∂ε̃

∂m2
φ

]
(17)

where φ = π,η, or K ,4 while f = u,d , and 〈q̄uqu〉 = 〈ūu〉, 〈q̄dqd〉 = 〈d̄d〉; ε̃ is the energy den-
sity, and mφ is the finite Goldstone boson mass generated by explicit chiral symmetry breaking.
Here we assume that the coupling constants, gA, g and fπ defined in Eqs. (2) and (3), do not
depend on the current quark mass, e.g. dg/dmf = 0. If we assume the presence of a K− con-
densate in χQM, a consideration similar to the one used in Ref. [3] leads to the following energy
density:

ε̃ = 3

4π2

∑
f =u,d

[
k
f
F

(
k
f 2
F + M2

f

)3/2 − 1

2
M2

f k
f
F

√
k
f 2
F + M2

f − 1

2
M4

f ln
k
f
F +

√
k
f 2
F + M2

f

Mf

]

− 1

2
f 2

πμ2
e sin2 θ + 2m2

Kf 2
π sin2 θ

2
− μeρu sin2 θ

2
− m′ρu

s sin2 θ

2
, (18)

where ρu
s is the scalar density of the u quark and m′ = mu + ms . Furthermore, the “chiral angle”

θ in V-spin space is given by θ ≡ √
2v/fπ , where v is the magnitude of the K− condensate.

3 In one such model calculation [34] based on the hadronic picture with the parameters MN , mπ and gπNN charac-
terizing the Lagrangian, Eq. (14) is evaluated from

〈q̄q〉ρN
= 〈q̄q〉vac + 1

2

[dMN

dmq

∂ε̃

∂MN
+ dmπ

dmq

∂ε̃

∂mπ
+ dgπNN

dmq

∂ε̃

∂gπNN

]
. (16)

4 In the last term of Eq. (17), we need to sum over all Goldstone bosons such as contributions from pions [35]. In
the present work, however, we only include the contribution from kaon condensate to highlight its specific effects on
quark–antiquark condensate.
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Considering the energy density in χQM given in Eq. (18), we write Eq. (17) in terms of 〈ūu〉
and 〈d̄d〉:

〈ūu〉ρB
= 〈ūu〉vac + 1

2

[
∂ε̃

∂mu

+ dMu

dmu

∂ε̃

∂Mu

+ dm2
K

dmu

∂ε̃

∂m2
K

]
, (19)

〈d̄d〉ρB
= 〈d̄d〉vac + 1

2

[
dMd

dmd

∂ε̃

∂Md

+ dm2
K

dmd

∂ε̃

∂m2
K

]
. (20)

In the expression for the energy density (18), 〈d̄d〉ρB
is independent of the K− condensate ampli-

tude θ , which will be shown explicitly below. We therefore focus on 〈ūu〉ρB
. In order to evaluate

Eq. (19) and deduce the density dependence of the quark–antiquark condensate, we require spe-
cific information about dMf /dmf and dm2

φ/dmf .
To determine dMf /dmf , we compare Eq. (17) with the model-independent result in Eq. (15)

at low density. Ignoring interactions among the constituent quarks and the contribution from
constituent quark kinetic energy, which seems to be reasonable at low density [34], we obtain the
following energy density in χQM,

ε̃ = Muρu + Mdρd, (21)

where ρf ≡ (k
q
F )3/π2. For symmetric matter we obtain

〈ūu〉ρB

〈ūu〉vac
= 1 − 3σu

2m2
πf 2

π

ρB, (22)

where σu ≡ mudMu/dmu, and we have used the GMOR relation. Comparing Eq. (22) with
Eq. (15), we arrive at σu = 2σN/3. For the d quark we obtain σd = 2σN/3.5 To proceed we now
assume that this relation is also valid up to a few times the normal nuclear matter density ρ0. For
a numerical estimate we use the value σN = 30 MeV [36].

Next we evaluate dm2
K/dmf . The mass term in Eq. (6) leads to m2

K = μ(mu + ms), from
which we obtain [34]6

dm2
K

dmu

= m2
K

mu + ms

(= μ),
dm2

K

dmd

= 0. (23)

The amplitude of the kaon condensate θ can be determined by extremizing Eq. (18) with
respect to θ . The result is

5 As mentioned in the introduction, the precise value of ρ̄ is not well determined at present, but this is not so important
in the present work. What matters here is the fact that the relevant degrees of freedom near chiral symmetry restoration
are the quasi-quarks rather than the baryons.

6 A comment is in order here on how the nonlinear quark mass dependence of the Goldstone boson mass affects (23).
The following terms give m2

q corrections to the Goldstone boson masses,

f 2
π

4
c1Tr

(
M†Σ

)
Tr

(
M†Σ

) + f 2
π

4
c2Tr

(
M†ΣM†Σ

) + f 2
π

4
c3Tr

(
M†Σ

)
Tr

(
MΣ†) + h.c.,

where c1, c2 and c3 are dimensionless parameters assumed to be of the order of 1. These terms lead to

dm2
K

dmu
= m2

K

mu + ms

{
1 + 2(c1 + c2 + c3)

(mu + ms)
2

m2
K

+ (c1 + c3)
md(mu + ms)

m2
K

}
.

These corrections are suppressed by a factor (mq/mK)2 compared to the leading term in Eq. (23).
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cos θ = 1

f 2
πμ2

e

(
m2

Kf 2
π − 0.5μeρu − 0.5m′ρu

s

)
. (24)

Now we consider in-medium 〈d̄d〉 in a kaon-condensed phase. From Eqs. (20) and (23), we
obtain

〈d̄d〉ρB
= 〈d̄d〉vac + 1

2

dMd

dmd

∂ε̃

∂Md

. (25)

This equation together with the energy density in Eq. (18) show that the K− condensate will
not affect the d̄d condensate. To see the effects of kaon condensation on the u quark condensate
〈ūu〉, we rewrite Eq. (19) as

R ≡ 〈ūu〉ρB

〈ūu〉vac
= 1 − mu

m2
πf 2

π

[
∂ε̃

∂mu

+ σu

mu

∂ε̃

∂Mu

+ m2
K

m′
∂ε̃

∂m2
K

]
, (26)

where we have used Eq. (23) and have taken mu = mq . The above expressions lead to

∂ε̃

∂mu

= f 2
πμ2

e cos θ
∂ cos θ

∂mu

− m2
Kf 2

π

∂ cos θ

∂mu

+ 1

2
μeρu

∂ cos θ

∂mu

− ρu
s sin2 θ

2
+ 1

2
m′ρu

s

∂ cos θ

∂mu

,

∂ε̃

∂Mu

= 3

2π2

(
Muk

u
F

√
ku2
F + M2

u − M3
u log

ku
F +

√
ku2
F + M2

u

Mu

)

+ f 2
πμ2

e cos θ
∂ cos θ

∂Mu

− m2
Kf 2

π

∂ cos θ

∂Mu

+ 1

2
μeρu

∂ cos θ

∂Mu

+ 1

2
m′ρu

s

∂ cos θ

∂Mu

− m′ sin2 θ

2

∂ρu
s

∂Mu

,

∂ε̃

∂m2
K

= f 2
π

(
1 − m2

K

μ2
e

)
+ 1

2μe

ρu + m′

2μ2
e

ρu
s , (27)

with

∂ cos θ

∂mu

= − ρu
s

2f 2
πμ2

e

,

∂ cos θ

∂Mu

= − m′

2f 2
πμ2

e

∂ρu
s

∂Mu

,

∂ρu
s

∂Mu

= 3

2π2

[
ku
F

√
ku2
F + M2

u + 2M2
uku

F√
ku2
F + M2

u

− 3M2
u ln

ku
F +

√
ku2
F + M2

u

Mu

]
. (28)

If we use for illustrative purposes μe = 270 MeV, ρB = 3.3ρ0, σN = 30 MeV and cos θ = 0.89
in Eq. (26), we arrive at R ∼ 0.35. This should be compared with R ∼ 0.39 that would result
if there is no kaon condensation (θ = 0). The results for R are also shown in Fig. 3 for typical
cases of σN = 30 MeV and μe = 230 and 270 MeV.7 Fig. 3 demonstrates that the presence of

7 For simplicity, the chemical potential μe is treated here as an external parameter, although in a full treatment it should
be determined self-consistently, see, e.g., Refs. [4,37].
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Fig. 3. R ≡ 〈ūu〉ρB
/〈ūu〉vac calculated with (solid line) and without (dotted line) kaon condensation taken into account.

The results are given for two different values of the electron chemical potential, μe = 230 and 270 MeV.

a kaon condensate leads to a faster decrease of 〈ūu〉 with increasing density. By contrast, the
d-quark condensate, 〈d̄d〉, is not affected by the presence of K− condensation to the lowest or-
der in density under consideration. We therefore expect that in the kaon-condensed phase 〈ūu〉/
〈d̄d〉 → 0 as ρB increases. It is generally expected that chiral symmetry restoration characterized
by 〈ūu〉 = 〈d̄d〉 = 0 occurs in dense matter.8 Our results indicate, however, that at densities be-
tween ρK

c and ρ
χSR
c (ρK

c < ρB < ρ
χSR
c ), kaon condensation may lead to a phase characterized by

〈ūu〉 � 0, 〈d̄d〉 
= 0, which represents partial “flavor-dependent restoration” of chiral symmetry.
Finally, we observe that a K− condensate gives rise to difference between the masses of the

constituent u and d quarks. It is easy to show

M�
u = M0 + mu − m′

2f 2
π

v2,

M�
d = M0 + md(= Md). (29)

Thus the presence of a K− condensate induces additional SU(2)-isospin symmetry breaking on
top of the small explicit isospin breaking due to mu − md 
= 0.

3.2. Quark–antiquark condensate in HBChPT

The results shown in previous subsection were obtained with the use of the energy density
calculated in χQM without taking into account the beta-equilibrium condition or the charge-
neutrality condition. In order to check whether the imposition of these constraints affects our
results, we evaluate in this section the quark–antiquark condensates in a kaon-condensed phase
using the energy density that has been calculated in HBChPT with the beta-equilibrium and

8 Another order parameter for chiral symmetry breaking is the pion decay constant fπ in the chiral limit mq = 0. Even
if 〈ūu〉 = 〈d̄d〉 = 0, chiral symmetry might be still broken, as long as fπ 
= 0 [33]. Such a pseudo-gap phenomenon is
observed in dense skyrmion crystal matter [22].
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charge-neutrality conditions taken into account [3,4,37]. The energy density εHB in the K− con-
densed phase obtained from HBChPT is [3,4,37]:

εHB = 3

5
E

(0)
F u

5
3 ρ0 + V (u)

+ uρ0(1 − 2x)2S(u) − μ2

2
f 2

π sin2 θ + 2m2
Kf 2

π sin2 θ

2
+ μuρ0x

− μuρ0(1 + x) sin2 θ

2
+ (2a1x + 2a2 + 4a3)msuρ0 sin2 θ

2
− μ4

12π2
, (30)

where E
(0)
F = (p

(0)
F )2/(2mN) and p

(0)
F = (3π2ρ0/2)1/3 are the Fermi energy and the Fermi mo-

mentum at normal nuclear matter density, x denotes the proton fraction ρp = xρB , and u is
defined by ρB = uρ0.9 V (u) is the charge-symmetric contribution of the nuclear interactions,
while S(u) is the symmetry energy parameterized as

S(u) = (
22/3 − 1

)3

5
E

(0)
F

(
u2/3 − F(u)

) + S0F(u), (31)

where S0 � 30 MeV and we choose F(u) = u. To concentrate on the effects of kaon conden-
sation on the quark–antiquark condensate, we may ignore the first two terms in Eq. (30), which
are independent of kaon condensation. Furthermore, for simplicity, we ignore the muon Fermi
sea. The energy of the charge-neutral ground state for a given baryon density is determined by
extremizing εHB with respect to x, μ and θ

∂εHB

∂x
= 0,

∂εHB

∂μ
= 0,

∂εHB

∂θ
= 0. (32)

We refer to Ref. [4] for the explicit expressions for these constraints. The numerical solu-
tions for the above equations can be found in Tables 3, 4 and 5 of Ref. [4]. Following the same
procedure as used in Section 3.1, we obtain

〈ūu〉 = 1 − σN

m2
πf 2

π

[
∂εHB

∂mN

+ mu

σN

m2
K

m′
∂εHB

∂m2
K

]
,

〈d̄d〉 = 1 − σN

m2
πf 2

π

∂εHB

∂mN

, (33)

where

∂εHB

∂mN

= − 1

mN

uρ0(1 − 2x)2(22/3 − 1
)3

5
E

(0)
F

(
u2/3 − u

)
, (34)

∂εHB

∂m2
K

= 2f 2
π sin2 θ

2
. (35)

Here σN = mq dmN/dmq with mq = (mu + md)/2. We assume that σN = σ
(u)
N (mu dmN/

dmu) = σ
(d)
N (md dmN/dmd). It is now straightforward to deduce the quark–antiquark con-

densate in a kaon-condensed phase with the use of εHB along with the numerical tables
(Tables 3, 4 and 5) in Ref. [4]. The results are given in Table 1 for the representative val-
ues of input parameters, σN = 30 MeV, a1ms = −67 MeV, a2ms = 134 MeV and a3ms =

9 To conform with the expressions in the literature, we adopt the symbol u here instead of c used in Section 2.
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Table 1
The ratios of quark–antiquark condensates in kaon-condensed phase. Here Ru =
〈ūu〉ρB

/〈ūu〉vac and Rd = 〈d̄d〉ρB
/〈d̄d〉vac. a3ms and μ are given in units of MeV

a3ms u μ Ru Rd

−134 7.18 93.7 0.834 0.9998
−134 7.68 73.5 0.822 0.9999

−222 4.08 98.7 0.865 0.9997
−222 4.58 38 0.812 0.9999

−310 2.92 86 0.875 0.9999

(−134,−222,−310) MeV. Note that we have ignored the density dependence of the quark–
antiquark condensate that is independent of kaon condensation. Table 1 indicates that the main
conclusion of Section 3.1 remains essentially unchanged by the imposition of the β-equilibrium
and charge-neutrality conditions; namely, 〈ūu〉ρB

/〈d̄d〉ρB
< 1 in kaon-condensed phase.

We notice that 〈d̄d〉ρB
in Table 1 exhibits slight dependence on the kaon condensate, whereas

〈d̄d〉ρB
in Section 3.1 shows no such dependence. This difference can be easily explained by

the fact that the symmetry energy S(u), which is responsible for the θ -dependence of 〈d̄d〉ρB
,

cannot arise in tree-level or one-loop-order calculations in the chiral quark model, and therefore
the effects subsumed in S(u) are missing in the energy density calculated in Section 3.1.

Before closing this subsection, we discuss the effects of spontaneous isospin violation sum-
marized in Eq. (29) on the nucleon mass. In the simplest valence quark picture in which the
proton (neutron) contains two constituent u-quarks and one constituent d-quark (one d-quark
and two u-quarks), we expect from Eq. (29) that the in-medium proton and neutron masses in
a kaon-condensed phase decreases with the density faster than in a normal phase (without kaon
condensation).10 This feature is in qualitative agreement with the result in Ref. [38]. The nucleon
effective masses in a kaon-condensed phase is studied in the context of a relativistic mean-field
model in Ref. [38], and it was found that the nucleons can have different effective masses in
normal and kaon-condensed phases.

4. Summary

We have discussed s-wave K− condensation in the framework of the chiral quark model, as-
suming that, in the density regime close to the critical density, the relevant degrees of freedom are
the constituent quark degrees of freedom. We have primarily investigated the effects of charged
kaon condensation on the quark–antiquark condensate and we have found that a K− condensate
in quark matter suppresses the quark–antiquark condensate for the u quark, 〈ūu〉, but leaves 〈d̄d〉
unaffected in the lowest order approximation adopted here. This suggests the possibility that a
partial chiral symmetry restoration in the medium with a K− condensate may be flavor depen-
dent, i.e., 〈ūu〉/〈d̄d〉 � 1 for increasing density. This raises an interesting question as to whether
or not the vector manifestation fixed point one finds in approaching a chiral restoration point
from normal Fermi liquid remains intact if the chiral restoration point is approached from a kaon
condensed state with its distorted Fermi seas of quasi-quarks.

10 A more detailed study on the nucleon mass and a neutron–proton mass difference in kaon-condensed matter will be
reported in a future publication.
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Appendix A

In this appendix, we state the power counting rules for χQM. Since we can treat the gluons
perturbatively with αs ≈ 0.28 [29], it suffices to focus on the Goldstone bosons and quarks.

The most general vertex in χQM in a cutoff regularization scheme takes the form [29],

(2π)4δ4
(∑

pi

)(
π

fπ

)A(
ψ

fπ

√
Λ

)B(
gGμ

Λ

)C(
p

Λ

)D

f 2
πΛ2, (A.1)

where for notational simplicity, we write Λ = ΛχSB = 4πfπ .
As far as the Goldstone boson sector is concerned, this counting rule is the same as the one

used in standard chiral perturbation theory (ChPT). Including quarks is straightforward, since the
constituent quark mass, Mf , can be considered small compared to ΛχSB ∼ 1 GeV, i.e. Mf ∼ p

where p is a typical momentum scale. Each quark propagator contributes −1 power of p, each
Goldstone boson propagator contributes −2 power of p, each derivative and quark mass in the
interaction terms contribute +1 power of p, and each four-momentum integration contributes
+4 powers of p.

All the factors put together, the chiral index D of a given amplitude with L loops, IGB internal
meson lines, IQ quark lines, NGB mesonic vertices and NGBQ meson–quark vertices is given
by

D = 4L − 2IGB − IQ +
∑
n

nNGB
n +

∑
d

dN
GBQ
d . (A.2)

For connected diagrams, we can use the topological relation

L = IGB + IQ −
∑
n

(
NGB

n + NGBQ
n

) + 1 (A.3)

to get

D = 2L + 2 + IQ +
∑
n

(n − 2)NGB
n +

∑
d

(d − 2)N
GBQ
d . (A.4)
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