Mu Metal Shielding

0

University of South Carolina Presenter: Robert Steinman Advisor: Dr. Ralf Gothe Collaborators: Ye Tian, Evan Phelps, and Jason Giamberardino

Known Problem

- ADC signal strength decreases in the presence of a magnetic field
- PMTs must be shielded for the FTOF detector
- Must decide the best way to shield while dealing with space constraints
- Using a homogeneous magnetic field created in a Helmholtz Coil

Axial and Transverse Fields

10 Gauss Axial Field

Signal Loss

PMT without any Shielding

PMT with no Shielding

- Signal loss under axial field depending on strength
- Complete signal loss under a transverse field
- Hamamatsu tubes have optional shielding built in

10 Gauss Axial Field

Signal Loss

PMT with Shielding Built In

10 Gauss Transverse Field

Very Similar Results

PMT with Shielding Built In

12 Gauss Axial Field

Preserved Signal Shape

Conclusions from 10 Gauss Test

- Axial => 5%-10% Signal Decrease
- Transverse => Preserved Signal
- Signal shape always maintained
- Built-in mu metal shielding of the PMT is adequate

20 Gauss Axial Field

Significant Signal Loss

PMT with Built-in Shielding

20 Gauss Transverse Field

25% Signal Loss

PMT with Built-in Shielding

25 Gauss Transverse Field

Significant Signal Loss

PMT with Built-in Shielding

Options for Transverse Field

- Apply additional shielding
- Square boxes allow us to adjust the thickness of the shield more easily

25 Gauss Transverse Field with 2mm Mu Metal Box

Signal Restoration

Built-in and Additional Shielding

25 Gauss Axial Field with 2mm Mu Metal Box

No Improvement

Built-in and Additional Shielding

Conclusions for Higher Fields

- Additional shielding needed for transverse fields above 20 Gauss
- Apply an external field (active shielding) to compensate for axial fields above 10 Gauss

Time Resolution Without Magnetic Field

20 Gauss Transverse Field

10 Gauss Axial Field

Effect on Time Resolution?

Final Remarks

	< 10 Gauss	< 20 Gauss	> 25 Gauss
Axial Field	Shielding in tube is enough	Steel frame and possible active shielding	Active shielding
Transverse Field	Shielding in tube is enough	Shielding in tube is enough	Additional shielding required